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The p-Norm Generalization of the LMS Algorithm
for Adaptive Filtering

Jyrki Kivinen, Manfred K. Warmuth, and Babak Hassibi

Abstract—Recently much work has been done analyzing on-
line machine learning algorithms in a worst case setting, where
no probabilistic assumptions are made about the data. This is
analogous to the H setting used in adaptive linear filtering.
Bregman divergences have become a standard tool for analyzing
online machine learning algorithms. Using these divergences,
we motivate a generalization of the least mean squared (LMS)
algorithm. The loss bounds for these so-called -norm algorithms
involve other norms than the standard 2-norm. The bounds can be
significantly better if a large proportion of the input variables are
irrelevant, i.e., if the weight vector we are trying to learn is sparse.
We also prove results for nonstationary targets. We only know
how to apply kernel methods to the standard LMS algorithm (i.e.,
= 2). However, even in the general -norm case, we can handle

generalized linear models where the output of the system is a
linear function combined with a nonlinear transfer function (e.g.,
the logistic sigmoid).

Index Terms—Adaptive filtering, Bregman divergences,H op-
timality, least mean squares, online learning.

I. INTRODUCTION

WE focus on the following linear model of adaptive fil-
tering:

(1)

Here is the unknown target, is a known input, is un-
known noise, and is the known output signal. We are inter-
ested in algorithms that maintain a weight vector based on
the past examples , , and, over a sequence
of trials, get as close as possible to the target . As we shall
see, closely related online problems have also been studied in
machine learning.

More specifically, at trial the algorithm receives and (in
order) and has to commit to a weight vector at some point after
seeing . We consider three problems depending on whether
the algorithm needs to commit to its weight vector before or
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after seeing and depending on how the loss of the algorithm
is measured.

• A priori filtering: Here we are interested in predicting the
noncorrupted output before the signal is received.
Therefore the algorithm needs to commit to its weight
vector right before seeing and our loss is the en-
ergy of the a priori filtering error , i.e.,

(2)

• A posteriori filtering: Here we assume that for estimating
the noncorrupted output , we also have access to the
measurement . Thus, the algorithm needs to commit to
its weight vector only after seeing and the loss is the
square of the a posteriori error

(3)

Note that as in a priori filtering, the algorithm does not
know when it produces weight vector at trial . It only
knows the past instances and outputs.

• Prediction: Here we are interested in predicting the next
observation before receiving it. Thus the algorithm
needs to commit to its weight vector before seeing

. The prediction error is and the loss

(4)

The prediction problem of minimizing (4) is also studied in
machine learning. Note that in the filtering problems, the term

is regarded as a disturbance, so we are inter-
ested in estimating the “true output” of the linear system
for the input . In the prediction problem we consider the
as the “true outcome” of some event we are interested in pre-
dicting. In that case there is no particular value in matching the
prediction at those times when it is inaccurate.

We could also define the notion of a posteriori prediction, i.e.,
trying to minimize

(5)

However, since is known when is chosen, the loss (5) is
trivially minimized by just choosing such that .

1053-587X/$20.00 © 2006 IEEE
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Although there are algorithms that do satisfy in
some limiting cases, taking this condition as the primary design
principle does not seem to add anything. Hence, we do not fur-
ther consider the loss (5).

In contrast to the loss function used by the prediction
problem, the loss functions for the two filtering problems
include the target that is unknown. Because the algorithm
cannot even evaluate its own loss, we need to be careful about
setting a reasonable performance criterion. We next set the
performance criteria we use in this paper, starting with a priori
filtering and its connection to recent work in machine learning.

Clearly the quality of output depends on the amount of noise,
which can be defined, for example, as . Ad-
ditionally, even with no noise, the loss (2) for any given al-
gorithm can be made arbitrarily large by scaling . To have
a well-defined choice of , we consider the regularized loss

where is a tradeoff
parameter. We then normalize the algorithm’s loss (2) with re-
spect to the regularized loss. Since we wish to avoid assump-
tions about , we consider the worst case choice, leading us to
the quantity

(6)

Given the data and an algorithm for producing , the
quantity (6) is always well defined. In control theory, (6) is seen
as a maximum energy gain and called the norm. (For the
above, and as done throughout this paper, we assumed ;
if , then must be replaced by .)

To get a reference point, consider the least mean squares
(LMS) algorithm [2] (also known as the Widrow–Hoff algo-
rithm), defined by the update rule

(7)

where is now a parameter of the algorithm and called the
learning rate. According to the basic result for a priori filtering
[3], if , then the LMS algorithm satisfies

(8)

In other words, LMS has norm at most 1. (Notice that the
learning rate parameter of the algorithm becomes the tradeoff
parameter for the regularized loss.) Further, no algorithm can
have norm less than 1. Therefore, we say that LMS is
optimal.

To compare this with results from machine learning, assume
there is a known upper bound such that for
all , and write . Then Cesa–Bianchi et al. [4] have
shown that for

(9)

To compare prediction with filtering, we write (6) as

(10)

where and are as above and . We see that the
bounds are similar in form, except for the factor 1/(1 ) in (9).

The factor 1/(1 ) in (9) is a source of many difficulties in
machine learning, where the goal is to tune the learning rate
so as to obtain the smallest possible bound. However, the fil-
tering bound (10) is optimized at . Thus we omit the
parameter from the filtering bounds when the norm of instances
is bounded.

Motivated by the similarity between (9) and (10), we are
going to take machine learning techniques that have recently
been used to generalize the LMS algorithm and apply them in
the filtering setting. This leads to generalizations of (10) and
new interpretations of the filtering algorithms. Techniques we
are interested in include:

1) motivating algorithms in terms of minimization problems
based on Bregman divergences [5], [6];

2) replacing the 2-norms in the bounds by other norms [5],
[7], [8];

3) allowing for nonstationary targets [9] and nonlinear pre-
dictors [10].

Before going on with the above program, let us have a brief
look at the a posteriori model. The norm for a posteriori
filtering is

Notice that since is available when choosing , we can triv-
ially obtain norm at most 1 by any choice that satisfies

. One particular way of doing this would be to let the
learning rate go to infinity in the normalized LMS algorithm [3].
However, there are other criteria that are minimized by using a
finite learning rate, while still retaining the norm at most
1. For example, this is the case if the data points are generated
by the model (1) with the noise variables independent and
Gaussian [3, Theorem 9]. Thus, while requiring the norm
to be at most 1 is a good robustness guarantee, in the a posteriori
case such a worst case measure is not by itself a sufficient cri-
terion for choosing a good algorithm. In the following we will
state all our bounds both for a priori and a posteriori filtering,
but they must be read with this caveat in mind.

Our -based performance criteria do not directly address
convergence. If the data are generated by the model (1) with the
noise variables independent and Gaussian, then one could
hope that the weights would converge toward the target .
However, if we do not wish to make such assumptions about
noise, the issue becomes less clear. An algorithm geared toward
fast convergence under zero-mean independent noise may fail
badly if, say, the early data points have large amounts of biased
and correlated noise. We aim for results that are not sensitive
to probabilistic assumptions and develop bounds like (6) and
(10), which hold for every sequence of examples. Such worst
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case bounds are rather stringent. If the examples are indepen-
dent identically distributed (i.i.d.), an averaging technique can
be used to convert worst case loss bounds to bounds on the ex-
pected loss (see, e.g., [5, Section 8]) or bounds on the probability
of high loss [11]. Clearly the choice of algorithm should depend
on the assumptions. In particular, even with independent noise,
updates like (7) with fixed learning rate do not typically lead to
convergence but remain oscillating around the optimal weight
setting.

In Section III, we introduce Bregman divergences and show
how a Bregman divergence can be used to derive two subtly
different updates: the implicit and explicit update. When the
squared Euclidean distance is used as the Bregman divergence,
these updates give the standard LMS and normalized LMS
algorithm [3], respectively. In Section IV, we give filtering
loss bounds for the explicit and implicit updates in the case
of Bregman divergences based on squared -norms [7]. These
bounds generalize the results of Hassibi et al. [3] about the

optimality of LMS and normalized LMS for the a priori
and a posteriori filtering problems. The generalization replaces
the product in the bound by another product of dual
norms , where and are such that
and . The new bounds are significantly stronger
when the target is sparse, i.e., has few nonzero components.
In Section V, we generalize the -norm based algorithms to
allow for nonstationary targets . The loss bounds in the non-
stationary case include an extra term that depends on the total
distance travels during the whole sequence, as measured
by the -norm. Again there are no distribution assumptions
about this movement. Section VI gives bounds for generalized
linear regression where the linear predictor is fed through a
nonlinear transfer function (such as the logistic sigmoid). Some
simulations are reported in Section VII, and our conclusions
presented in Section VIII.

Some preliminary results of this paper were presented at the
13th IFAC Symposium on System Identification [1]. This paper
includes some additional algorithms and new simulation results,
as well as full proofs of the theoretical results.

II. THE LMS BOUND

As an introduction to our methods, we rederive the basic re-
sult of [3]. Later we will see how the algorithm and proof gen-
eralize from the Euclidean to other -norms.

Theorem 1 [3]: Assume that for all , and
choose . Then the LMS algorithm (7) satisfies

for any .
Proof: Following [4], we analyze the progress

made at up-
date toward the comparison vector . Direct calculation gives
us

By estimating and rearranging terms, we get

where and . Since
and , we can apply and

to get

from which the claim follows.

III. DERIVATION OF ALGORITHMS

In this section we give the basic definitions of Bregman diver-
gences and explain their use in deriving generalizations of the
LMS algorithm. (See [12] and references therein for more back-
ground on these divergences.) Later the same Bregman diver-
gences will be used to prove bounds for these new algorithms.
Note that the bound for the LMS algorithm involves the 2-norms
of the inputs and target . The bounds for the new algorithm
will depend on norms and where in general , .

Assume that is a strictly convex twice differentiable func-
tion from a subset of to . Denote its gradient by ;
notice that is one-to-one. The Bregman divergence
[13] is defined for , as the error in approximating

by its first order Taylor polynomial around . More for-
mally

The Bregman divergence is always nonnegative, and
zero only for . It is (strictly) convex in but might not be
convex in . Usually, is not symmetric.

Example 1: For , define , where
denotes the -norm defined as . We

denote the corresponding Bregman divergence by . Thus

where the gradient is given by

A second important family of Bregman divergences is the
relative entropy and its variants.

Example 2: Assume for all and define
, with the usual convention . Then
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is the unnormalized relative entropy. (When
, this gives the standard relative entropy.) The gradient is given

by .
The following generalization of the Pythagorean theorem fol-

lows directly from the definition of a Bregman divergence:

(11)
Since the dot product can be positive,
this shows in particular that does not satisfy the triangle in-
equality. We recover the standard Pythagorean theorem when
the divergence is the squared Euclidean distance (i.e., is iden-
tity) and the dot product is zero (i.e., and are
orthogonal).

We now use a Bregman divergence as a regularizer for
deriving an update rule. This framework for motivating updates
was introduced in [5] in the prediction setting. In the following,
we are mainly interested in Bregman divergences based on the
squared -norm. They were introduced in [7] to analyze algo-
rithms for learning linear threshold functions.

Suppose an example has been observed and we wish
to update our hypothesis based on this example. We wish
to decrease the squared loss (other convex loss
functions can also be considered; see Section VI). However, we
should not make big changes based on just a single example.
Thus, we define

where is a tradeoff parameter, and tentatively set
. Since is convex, we can minimize by set-

ting . By substituting the definition of , this
becomes

(12)

Since appears on both sides of (12), we call the update rule
defined by this equality the implicit update for divergence .
Notice that (12) can be solved numerically by a line search since

for some scalar , and the inverse
is easy to compute in the cases we consider. Also in the special
case of 2-norm , with the identity function, we
can solve (12) in closed form to get

(13)

This is the algorithm called normalized LMS in [3].
Instead of solving (12) numerically, we often find it sufficient

to notice that for reasonable values of , the values and
should be fairly close to each other. Thus, we may

approximate the solution of (12) by

(14)

We call this the explicit update for divergence . The special
case gives the usual LMS algorithm.

Note that the explicit update uses the gradient of the square
loss evaluated at the old weight vector , whereas the im-
plicit update is based on the gradient at the updated parameter

vector . For a discussion of taking the old gradient versus the
future gradient in for the prediction problem, and a derivation of
the implicit LMS algorithm, see [5]. In [14], an implicit update
was derived as an alternate to the algorithm. In this case
the implicit definition was crucial for producing an improved
algorithm.

IV. BOUNDS IN TERMS OF DIFFERENT NORMS

Our interest in considering the generalization of LMS to the
-norm based algorithms comes from the fact that for these al-

gorithms, the term in the LMS bound is replaced by
another product of dual norms (i.e., ).
We discuss the implications of this after giving the main result,
which is a direct generalization of Theorem 1.

We consider the explicit (14) and implicit (12) updates for
the divergence given in Example 1. The special case

gives the classic LMS and Theorem 1. For the updates,
we need the gradient , which was given in Example 1, and also
its inverse , which is easily seen to be

where .
We assume the relationship throughout this

paper. It means that we can apply Hölder’s inequality
. As a further convention, we assume , so

. The important special case gives
, with the identity function.

We use the following inequality for proving bounds for the
updates:

(15)

This inequality is implied by derivations given in [7] and was
stated explicitly in [8, Lemma 2]. For completeness, we give
the proof in Appendix I.

Theorem 2: Fix and such that and
. Assume that for all . Then the explicit update

(14) for with learning rate satisfies

for any .
Proof: Following [5], we analyze the progress

made at update toward
the comparison vector . By substituting (14) into (11) and
then using (15), we get

By rearranging terms, we can write this as
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where and . Since
and , we can apply

and to get

from which the claim follows.

The main intuitive implication of Theorem 2 (and later The-
orem 3, which will deal with the implicit update) is that the
bound favors large when the target is sparse. To make this
more precise, we compare the bound for (i.e., classic
LMS) against (i.e., fairly large ). Gentile and Little-
stone [8, Corollary 7] have shown that for the particular choice

, we have

(16)

(where ). Thus, we compare the bound
(for LMS) with the bound (for

large ).

Since the -norm is decreasing in , we have
and , with equality if the vector has only one
nonzero component. Hence, the dependence on favors ,
but the advantage gets smaller if is very sparse. Similarly, the
dependence on favors large , but the advantage gets smaller
if is very sparse.

To get a concrete picture of the tradeoff, let us consider two
extreme cases. In the first case, we choose and

such that exactly one component is nonzero.
Then , , and . The
LMS bound becomes simply , while the large bound becomes

. Hence, the LMS bound is clearly better for large .
In the second case, choose such that exactly
one component is nonzero, and choose . Then

, ,and .TheLMSboundis
as in the first case, but the large bound drops to . Notice

that the dependence on in this last bound is only logarithmic,
so for large the difference to LMS can be quite large.

The above two example scenarios were of course unrealisti-
cally extreme. In a typical application, one would expect the com-
ponents of the inputs to have roughly the same magnitude,
so the inputs would be relatively dense. Then a large would be
favored if is close to , which is the case if most of the
weight in is concentrated on only few components. One should
also notice that the upper bounds might not reflect the actual be-
havior of the algorithms. However, simulations suggest that the
picture given here is at least qualitatively correct: the algorithms
for and large are incomparable, and large is better if the
target is sparse. See Section VII for some examples.

In the context of prediction, much attention has been paid
to multiplicative algorithms such as Winnow [15] and EG [5],
which have bounds similar to the -norm algorithms for

. In addition to upper bounds and simulations [5], there
are also some lower bounds [16] showing that in certain situa-
tions LMS-style algorithms cannot perform as well as multi-
plicative ones. The multiplicative EG algorithm can be seen as
applying the update (14) with (with a further
normalization step). The analysis of EG can also be lifted to the
filtering setting, resulting in the bound

for a scaled explicit version. See Appendix II for details and
notice the improved constant of over appearing in
(16). Multiplicative algorithms are closely related to regu-
larization, which can be seen as a form of feature selection [17].

We now consider the a posteriori case. The following the-
orem generalizes the result about normalized LMS in [3]. How-
ever, our result has an additional restriction on the learning rate,
which we believe to be an artefact of the proof technique. We
shall discuss this after giving the theorem and its proof.

Theorem 3: Fix and such that and
. Assume that for all . Then the implicit

update for with learning rate satisfies

Proof: Again let . By sub-
stituting (12) into (11) and applying (15), we get

Since minimizes , it is easy to show that
or ; that is, the update

moves to the right direction but not too far. This implies

(17)

so we get

We can rewrite this as

where and . By rearranging
terms, this becomes

The rest follows as in the proof of Theorem 2.
Our proof actually implies

(18)
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for any learning rate . For the case
, Hassibi et al. [3] actually show (18) for any .

Notice that the estimate (17) in our proof can equivalently be
written as . This holds
as equality for , but becomes very loose as approaches
infinity (so approaches zero). In the case , we
can use the closed form (13) of the normalized LMS algorithm
to obtain . Using
this tighter estimate allows the proof to go through for arbitrary

. Unfortunately, we have not been able to obtain a similar
bound for the case , with nonlinear in the update (12).

As discussed in [5], whenever a learning rate needs to be
tuned, then the tuned choice should be of the correct “type.” As
we shall see, this is indeed the case in the above two theorems.
We denote the type of the weight vectors as and the type
of the instances as . The type of the outputs must then be

. It is easy to check that the transformations
and for do not change the type of a weight vector.

So now the type of in the implicit and explicit update for
must be and the tunings prescribed in the theorems indeed
choose an of this type. Throughout this paper, our tunings of

always fix the type of for all the updates discussed.

V. NONSTATIONARY TARGETS

Following [9], we now consider a variant of the algorithm that
keeps the -norm of the weight vector bounded by , where

is a parameter to the algorithm. We call this two-step
update the bounded explicit update for .

• Explicit update step: Let

• Out-of-bound update step: If , then
; otherwise .

Thus if the update tries to increase the -norm of its weight
vector above , then we scale it back.

We now let the target vary with time (nonstationary
model):

(19)

As previously, our bound will include a penalty for the (max-
imum) norm of . Additionally, there is now also a penalty for
the total distance the target moves during the process.

Theorem 4: Fix and such that and
. Assume and for all . Then the

bounded explicit update for with learning rate
and parameter satisfies

Proof: We apply the proof technique introduced in the pre-
diction setting in [9]. We define the progress at trial as the sum
of three parts , where

Then . (For notational con-
venience we define for the last time step.)

For , the proof of Theorem 2 gives directly

(20)

where and .
For estimating , first note that the out-of-bound step can be

expressed as

In other words, is the projection of into the closed convex
set with respect to . Well-known
properties of such projections [9], [13] imply that for any ,
we have and thus .

From the definition of , we get

By Hölder’s inequality,
. Since , we

get

By summing over and substituting the value of
, we obtain

For , we have . Estimating
and gives the claim.

In the special case for all , the result becomes
Theorem 2 with the exception that the norm bound must be
fixed in advance.

The same technique can be applied to the a posteriori
problem. Given , we define the bounded implicit update
for with the following two-step update.

• Implicit update step: Let be such that

• Out-of-bound update step: If , then
; otherwise .

Thus, we swapped the notation from the explicit update and use
for the bounded and for the unbounded weight. Basically

we now want to predict with the unbounded weights. The bound
is as expected.

Theorem 5: Fix and such that and
. Assume and for all . Then the
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bounded implicit update for with learning rate
and parameter satisfies

Proof: We mimic the proof of Theorem 4. This time we
set

For , the proof of Theorem 3 gives

where and . We estimate
and and sum over exactly as in the proof of Theorem 4.

All the previous bounds are for algorithms that use a constant
learning rate that needs to be set at the beginning, and the op-
timal choice depends on the norms of the instances, which may
not be known in advance. We close this section by considering a
variant where we use a variable learning rate based on the norms
of instances seen thus far. For simplicity, we deal only with the
explicit update case.

Thus, define the explicit update with variable learning rate as

where now is a time-dependent learning rate. The out-of-
bound update is as before.

The bound proven below is identical to the fixed version
given in Theorem 4 except for an additional factor of five in the
second term on the right-hand side.

Theorem 6: Fix and such that and
. Let where .

Assume for all . Then the bounded explicit update
for with the variable learning rate and
parameter satisfies

Proof: We modify the proof of Theorem 4 using the
method of [18] for handling the variable learning rate. Fortu-
nately, in filtering, the technicalities are much easier than in the
prediction setting.

Thus, we consider the quantity . By re-
placing with in (20), we see that the proof of Theorem 4
implies

where and . (Again
we set ; also let .) By substituting

and then noticing that
, we get

By [18, Lemma 3.2], we have whenever
and , so in particular

. Remembering that , we get

By summing over , we get

The result follows by solving for , noticing
and then ignoring the negative

terms and .

VI. GENERALIZED LINEAR MODELS

We extended framework slightly to cover generalized linear
regression. Here we replace the model (1) by

(21)

where is a continuous, strictly increasing transfer function.
The logistic sigmoid is a typical ex-
ample. In the prediction setting (where the learner tries to match

), the prediction becomes . In the filtering
setting, we would naturally also include the transfer function in
the prediction, giving for the a priori and

for the a posteriori case. The algorithm then
tries to match to . One could in principle still use
the squared error as the performance
measure, but this is nonconvex in and and actually leads to
a very badly behaved optimization problem [19]. We obtain a
better behaved problem by using the matching loss for [19],
defined for and in the range of as

(22)

(Notice that by our assumptions is one-to-one.) It is easy to
see that for the identity transfer function , we get
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; and for the logistic sigmoid
, we get the logarithmic loss

The definition (22) may seem arbitrary, but it is actually a one-
dimensional Bregman divergence: if we let ,
then

(23)

Using a Bregman divergence as a loss naturally generalizes to
multidimensional outputs [6], but we shall not pursue that here.

Directly from (22), we obtain a simple expression for its gra-
dient

(24)

Therefore, the explicit update (14) naturally generalizes to

where . The implicit update can be generalized
similarly; for it we use . For these updates we
can now prove bounds that have as an additional factor an upper
bound on the slope of the transfer function. The techniques are
essentially those introduced by [10].

Theorem 7: Fix and such that and
. Let be strictly increasing and continuously differentiable

with such that holds for all , and let be the
matching loss for . Assume that for all . Then
both the explicit update and implicit update for with learning
rate satisfy

for any .
Proof: Consider first the explicit update. As in the proof

of Theorem 2, let

Using (23), we get

Simple calculus shows that for all
and . By combining this with (15), we get

The claim follows by summing over as usual.
Consider now the implicit update. We have

where now . We write

Like above, we have

Also, since is the solution to

we have either or
. In either case, . Hence,

we have established

and can proceed as with the explicit update.
Because of how we defined , the theorem gives an a priori

filtering bound for the explicit update and a posteriori bound for
the implicit update.

When is the identity function, we get the results of Sec-
tion IV with . For the logistic sigmoid, . Thresh-
olded transfer functions, such as , correspond to
the limiting case , which makes the bound vacuous.

This result generalizes to the nonstationary case (Section V)
in the obvious manner; we omit the details.

Our main motivation for considering loss functions other than
square loss was that they make the problem involving a non-
linear transfer function computationally simpler, which also al-
lows strong worst case bounds. One might also prefer different
loss functions if one assumes a non-Gaussian noise distribution
[20]. This is quite different from our framework, where no sta-
tistical assumptions are made.

VII. SIMULATION RESULTS

The discussion following Theorem 2 suggests that having a
sparse target favors having a large . We illustrate this with a
simple filtering simulation.

At time , the sender sends a bit over a channel.
The recipient is required to produce a binary prediction

about the sent bit. If , we say that an error
occurred. What the recipient actually observes is

where for some describes the channel and is zero-
mean Gaussian noise. The prediction is then sign

, where and
is the filter length.

Notice that this setting is not quite the same as introduced
earlier, since we are now considering discrete errors but still
using the update rules based on square loss. The purpose of this
is to illustrate how the algorithms work on binary prediction,
which often is the problem one is really interested in.

For choosing , we considered two different distributions. In
the first experiment, is from a Gaussian with unit variance. In
the second experiment, , where and

are distributed uniformly. In both cases, we then
renormalize to make . The targets from the second
distribution are “sparse” in the sense that most of the weight
is concentrated on only few components, whereas the targets
from the first distribution are “dense.” In both experiments, we
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used , and a signal-to-noise ratio of 10 dB. We
compared the explicit update algorithm with against

. (As we remarked after Theorem 2, for
we can estimate .)

Notice that due to the constant learning rate, the weight vec-
tors of the algorithms end up oscillating around the optimum,
so the algorithms converge to a nonzero error rate. By using a
smaller learning rate, one can reduce the oscillations and thus
achieve a smaller final error rate, but this makes the initial con-
vergence slower. The choice of learning rate is thus not straight-
forward.

We used for the value as
suggested by Theorem 2. This gave final error rates 0.02 in the
first experiment and 0.01 in the second one. For we then
chose so that these same final error rates were achieved. For
the first experiment, this resulted in , and for the
second one, .

The development of the error rates over time is shown in
Fig. 1. As expected, gives a faster convergence for dense
targets and for sparse targets. The differences here
are not large, but they become more apparent if the filter length
(i.e., dimensionality of inputs) is increased.

We did not include the implicit updates in this comparison.
In other experiments we noticed that for any fixed and ,
the implicit update has slower initial convergence and smaller
final error rate than the explicit one. This can be understood by
noticing that by (17), the implicit update always makes a smaller
step. Hence, as a crude first approximation, the implicit update
is similar to the explicit update with a smaller .

VIII. DISCUSSION AND CONCLUSION

We have shown how Bregman divergences based on -norms
can be used to derive generalizations of the classical LMS al-
gorithm. This is a direct application of methods recently in-
troduced in machine learning. The resulting -norm algorithms
have for large quite different behavior from the LMS, which
is the special case . In particular, both theoretical bounds
and preliminary simulations suggest that the large version has
better performance when the target weight vector is sparse. We
apply further methods from machine learning to show that also
in filtering, the -norm algorithms can be made robust against
target shift and can be adapted for generalized linear systems.

The question of applying these techniques to genuinely
nonlinear problems remains unsolved. Recently much work has
been done in machine learning on applying linear algorithm to
nonlinear problems using the so-called kernel trick. This trick
works for a large class of algorithms, such as LMS, the support
vector machine, or more generally any rotation invariant algo-
rithm [16], [17], [21]. The -norm algorithm for is not
rotation invariant, and it remains an open problem whether it
can be efficiently nonlinearized with some technique analogous
to the kernel trick. For algorithms with similar performance to
the -norm algorithm with large , efficient techniques have

been found for some kernels [22], but for other kernels the
problem is known to be intractable [23]. Further, the computa-
tional requirements in signal processing applications may even
rule out kernel-style approaches that rely on storing a large
number of data points. Thus, the prospects of finding a general
nonlinear version of the -norm algorithms do not seem good.
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(a) (b)

Fig. 1. Error rates as function of time for p = 2 (solid line) and p � 6:9 (dotted line) in the filtering simulation. The error rates are averages over 5000 runs.
The experiments were run for 30000 time steps to make sure the algorithms converged to same error rate; the plots show only the initial part. (a) Dense target and
(b) sparse target.

APPENDIX I
PROOF OF (15)

Since , a straightforward calculation shows
that and for all
[8, Lemma 1]. Fix now and , with

. Based on the above, it is easy to verify that
. (Notice the order of the arguments.) Let
. Since is defined as the error of a first-order

Taylor approximation for , we can write

(25)

where and the derivatives are evaluated
at some point on the line between and . We now estimate
the right-hand side of (25) as in [7, Theorem 7.1]. We have

Since we assume , we get

where and . Since
, Hölder’s inequality gives us

and the claim follows.

APPENDIX II
EXPONENTIATED GRADIENT

As in Example 2, the relative entropy can be seen as a
Bregman divergence. The constraint requires some
additional technicalities. We present here a fairly straightfor-
ward method. For a more general framework allowing potential
functions that are not strictly convex, see [6].

For and with , , and ,
define the relative entropy

(We take and otherwise.) Notice that
is convex in . Consider minimizing

subject to , for all . The problem is convex,
so we solve it by setting the gradient of the Lagrangian

to zero. This yields

or (after substituting such that )

(26)

where . Notice that
implies .
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For , define now by

(27)

Let be such that . It is easy to see that such
a exists assuming for all and

. Further, if is another vector satisfying ,
then and are the same up to an additive constant,
i.e., for some that does not depend on .
Equation (26) can now be written as , where

. Notice that because of the normalization,
the choice of the representative (i.e., the constant ) makes
no difference.

Again, we define the implicit and explicit version of the up-
date. We use an additional parameter vector to present the
algorithm, the actual weights being given by . In
both cases, we start with . For the implicit exponentiated
gradient algorithm, we define by

and for explicit exponentiated gradient (EG) algorithm by

Thus the implicit update uses as the minimizer of , while
the explicit update uses an approximation thereof. These up-
dates are analogous to the implicit and explicit updates given
previously, with now replacing . However, in this case
is not one-to-one, so we write the update in terms of (which
corresponds to in the previous setting) and not directly in
terms of .

The following lemma gives the analogues of (11) and (15) for
relative entropy.

Lemma 1: Let and for some ,
. Then

(28)

and for any with and , we have

(29)

Proof: Equation (29) follows directly from the definition.
To prove (28), we first write

where . Notice that . There-
fore, is the error in the first-order Taylor
approximation of around , and we have

, where is the
Hessian of evaluated at some point between and . We
have

Therefore we can write for some that
satisfies and . Denote now by a random

variable that is obtained by choosing the value
with probability . Then

Theorem 8: Assume that for all .
Then for any with and , the explicit
EG algorithm with learning rate satisfies

where is the uniform weight vector.
Proof: We analyze the progress

. By substituting the explicit EG update into (29) and
then using (28), we get

By rearranging terms, we can write this as

where and . Since
, we can apply to get

from which the claim follows.
The above theorem assumes the comparison vector is a

probability vector. To deal with arbitrary vectors with
for some given bound , we define the scaled explicit

algorithm as explicit EG with each input replaced by
.

Corollary 1: Assume for all . Then for any
with , the scaled explicit algorithm

satisfies

Proof: There is some with for all and
such that for all . Thus we can

apply Theorem 8 with this . We have
. Since is the uniform 2 -dimensional probability

vector, we have .
Bounds for the implicit EG algorithm can be proven analo-

gously.
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