CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Developing fine-grained nationwide predictions of valuable forests using biodiversity indicator bird species
Authors
Risto K. Heikkinen
Pekka Hurskainen
+6 more
Sonja Kivinen
Heini Kujala
Saija Kuusela
Niko Leikola
Jari Valkama
Raimo Virkkala
Publication date
1 January 2022
Publisher
Doi
Cite
View
on
PubMed
Abstract
Publisher Copyright: © 2021 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America.The use of indicator species in forest conservation and management planning can facilitate enhanced preservation of biodiversity from the negative effects of forestry and other uses of land. However, this requires detailed and spatially comprehensive knowledge of the habitat preferences and distributions of selected focal indicator species. Unfortunately, due to limited resources for field surveys, only a small proportion of the occurrences of focal species is usually known. This shortcoming can be circumvented by using modelling techniques to predict the spatial distribution of suitable sites for the target species. Airborne laser scanning (ALS) and other remote sensing (RS) techniques have the potential to provide useful environmental data covering systematically large areas for these purposes. Here, we focused on six bird of prey and woodpecker species known to be good indicators of boreal forest biodiversity values. We used known nest sites of the six indicator species based on nestling ringing records. Thus, the most suitable nesting sites of these species provide important information for biodiversity-friendly forest management and conservation planning. We developed fine-grained, i.e., 96 x 96 m grid cell resolution, predictive maps across the whole of Finland of the suitable nesting habitats based on ALS and other RS data and spatial information on the distribution of important forest stands for the six studied biodiversity indicator bird species based on nesting habitat suitability modelling, i.e., the MaxEnt model. Habitat preferences of the study species, as determined by MaxEnt, were in line with the previous knowledge of species-habitat relations. The proportion of suitable habitats of these species in protected areas was considerable, but our analysis also revealed many potentially high-quality forest stands outside protected areas. However, many of these sites are increasingly threatened by logging due to increased pressures for using forests for bioeconomy and forest industry based on National Forest Strategy. Predicting habitat suitability based on information on the nest sites of indicator species provides a new tool for systematic conservation planning over large areas in boreal forests in Europe, and corresponding approach would also be feasible and recommendable elsewhere where similar data are available.The use of indicator species in forest conservation and management planning can facilitate enhanced preservation of biodiversity from the negative effects of forestry and other uses of land. However, this requires detailed and spatially comprehensive knowledge of the habitat preferences and distributions of selected focal indicator species. Unfortunately, due to limited resources for field surveys, only a small proportion of the occurrences of focal species is usually known. This shortcoming can be circumvented by using modeling techniques to predict the spatial distribution of suitable sites for the target species. Airborne laser scanning (ALS) and other remote sensing (RS) techniques have the potential to provide useful environmental data covering systematically large areas for these purposes. Here, we focused on six bird of prey and woodpecker species known to be good indicators of boreal forest biodiversity values. We used known nest sites of the six indicator species based on nestling ringing records. Thus, the most suitable nesting sites of these species provide important information for biodiversity-friendly forest management and conservation planning. We developed fine-grained, that is, 96 x 96 m grid cell resolution, predictive maps across the whole of Finland of the suitable nesting habitats based on ALS and other RS data and spatial information on the distribution of important forest stands for the six studied biodiversity indicator bird species based on nesting-habitat suitability modeling, that is, the MaxEnt model. Habitat preferences of the study species, as determined by MaxEnt, were in line with the previous knowledge of species-habitat relations. The proportion of suitable habitats of these species in protected areas (PAs) was considerable, but our analysis also revealed many potentially high-quality forest stands outside PAs. However, many of these sites are increasingly threatened by logging because of increased pressures for using forests for bioeconomy and forest industry based on National Forest Strategy. Predicting habitat suitability based on information on the nest sites of indicator species provides a new tool for systematic conservation planning over large areas in boreal forests in Europe, and a corresponding approach would also be feasible and recommendable elsewhere where similar data are available.Peer reviewe
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
PubMed Central
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pubmedcentral.nih.gov:9285...
Last time updated on 02/09/2022
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 29/06/2022
Helsingin yliopiston digitaalinen arkisto
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:helda.helsinki.fi:10138/34...
Last time updated on 17/05/2022
Helsingin yliopiston digitaalinen arkisto
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:helda.helsinki.fi:10138/35...
Last time updated on 14/12/2022