4 research outputs found

    Na/h exchange regulatory factor 1 deficient mice show evidence of oxidative stress and altered cisplatin pharmacokinetics

    No full text
    (1) Background: One third of patients who receive cisplatin develop an acute kidney injury. We previously demonstrated the Na/H Exchange Regulatory Factor 1 (NHERF1) loss resulted in increased kidney enzyme activity of the pentose phosphate pathway and was associated with more severe cisplatin nephrotoxicity. We hypothesized that changes in proximal tubule biochemical pathways associated with NHERF1 loss alters renal metabolism of cisplatin or response to cisplatin, resulting in exacerbated nephrotoxicity. (2) Methods: 2–4 month-old male wild-type and NHERF1 knock out littermate mice were treated with either vehicle or cisplatin (20 mg/kg dose IP), with samples taken at either 4, 24, or 72 h. Kidney injury was determined by urinary neutrophil gelatinase-associated lipocalin and histology. Glutathione metabolites were measured by HPLC and genes involved in glutathione synthesis were measured by qPCR. Kidney handling of cisplatin was assessed by a kidney cortex measurement of γ-glutamyl transferase activity, Western blot for γ-glutamyl transferase and cysteine S-conjugate beta lyase, and ICP-MS for platinum content. (3) Re-sults: At 24 h knock out kidneys show evidence of greater tubular injury after cisplatin and exhibit a decreased reduced/oxidized glutathione ratio under baseline conditions in comparison to wild-type. KO kidneys fail to show an increase in γ-glutamyl transferase activity and experience a more rapid decline in tissue platinum when compared to wild-type. (4) Conclusions: Knock out kidneys show evidence of greater oxidative stress than wild-type accompanied by a greater degree of early injury in response to cisplatin. NHERF1 loss has no effect on the initial accumulation of cisplatin in the kidney cortex but is associated with an altered redox status which may alter the activity of enzymes involved in cisplatin metabolism

    Quantifying the relationship between sub-population wastewater samples and community-wide SARS-CoV-2 seroprevalence

    Get PDF
    Robust epidemiological models relating wastewater to community disease prevalence are lacking. Assessments of SARS-CoV-2 infection rates have relied primarily on convenience sampling, which does not provide reliable estimates of community disease prevalence due to inherent biases. This study conducted serial stratified randomized samplings to estimate the prevalence of SARS-CoV-2 antibodies in 3717 participants, and obtained weekly samples of community wastewater for SARS-CoV-2 concentrations in Jefferson County, KY (USA) from August 2020 to February 2021. Using an expanded Susceptible-Infected-Recovered model, the longitudinal estimates of the disease prevalence were ob-tained and compared with the wastewater concentrations using regression analysis. The model analysis revealed sig-nificant temporal differences in epidemic peaks. The results showed that in some areas, the average incidence rate, based on serological sampling, was 50 % higher than the health department rate, which was based on convenience sampling. The model-estimated average prevalence rates correlated well with the wastewater (correlation = 0.63, CI (0.31,0.83)). In the regression analysis, a one copy per ml-unit increase in weekly average wastewater concentration of SARS-CoV-2 corresponded to an average increase of 1-1.3 cases of SARS-CoV-2 infection per 100,000 residents. The analysis indicates that wastewater may provide robust estimates of community spread of infection, in line with the modeled prevalence estimates obtained from stratified randomized sampling, and is therefore superior to publicly available health data.11Nsciescopu
    corecore