35 research outputs found

    ICML Exploration & Exploitation challenge: Keep it simple!

    No full text
    International audienceRecommendation has become a key feature in the economy of a lot of companies (online shopping, search engines...). There is a lot of work going on regarding recommender systems and there is still a lot to do to improve them. Indeed nowadays in many companies most of the job is done by hand. Moreover even when a supposedly smart recommender system is designed, it is hard to evaluate it without using real audience which obviously involves economic issues. The ICML Exploration & Exploitation challenge is an attempt to make people propose efficient recommendation techniques and particularly focuses on limited computational resources. The challenge also proposes a framework to address the problem of evaluating a recommendation algorithm with real data. We took part in this challenge and achieved the best performances; this paper aims at reporting on this achievement; we also discuss the evaluation process and propose a better one for future challenges of the same kind

    Les expressions du référent national en néerlandais contemporain

    No full text
    Expressions of national referents are used to refer to organisms, products, social or professional statuts, events who are typical for a society like a nation. With languages who are spoken in several countries (like Dutch) we can see that the expressions are not onderstood in others countries.Les expressions des référents nationaux désignent des organismes, des produits, des statuts sociaux ou professionnels, des événements propres à une société du type Etat-nation. Pour une langue parlée dans plusieurs pays (comme le néerlandais), on peut montrer que ces expressions ne sont pas comprises d'un pays à l'autre

    Einfluss der Kaliumdüngung auf das Wachstum und die Wassernutzungseffizienz von Ackerbohne (Vicia faba), Sommerweizen (Triticum aestivum) und Tomate (Solanum lycopersicum) unter Kontroll-, Trockenstress- bzw. Salinitätsbedingungen

    Get PDF
    Ziel dieser Arbeit war es, den speziellen Einfluss einer Kalium-(K)-Düngung auf das Pflanzenwachstum herauszustellen. Es wurde untersucht, ob der Wasserhaushalt der Pflanzen durch Kalium verbessert und inwiefern die Wassernutzungseffizienz (WUE) verändert wird. Dabei wurde auch nach speziellen Wirkungen von K auf die Verbesserung der WUE unter Trockenstress- und Salinitätsbedingungen geforscht. Die Verbesserung der WUE könnte auf eine Verringerung des Wasserverbrauches und / oder auf die gesteigerte Trockenmassebildung (TM) zurückzuführen sein. Für die Untersuchung der Hypothesen wurden Ackerbohnen (Vicia faba L.), Sommerweizen (Triticum aestivum L.) und Tomaten (Solanum lycopersicum L.) unter verschiedenen Kalium- und Wasserversorgungsstufen angebaut. Kalium wurde vorrangig als K2SO4 in optimaler und in unzureichender Menge angeboten. Der Wasserstress wurde bei allen Pflanzen durch Dürre, bei den Ackerbohnen zusätzlich auch über saline Bodenverhältnisse induziert. Als Kontrolle wurden die Varianten bei optimaler Bodenfeuchte angezogen. Durch die salinen Bodenbedingungen wurde in den Pflanzen ein Stress ausgelöst, der zu einem geringeren Wachstum führte. Eine Ionentoxizität war an den Blättern der Ackerbohne nicht zu erkennen. Für die Versuche mit Ackerbohnen und Sommerweizen wurden Container (0,9 · 0,4 · 0,4 m, 120 L) verwendet. Damit war es möglich in einer Vegetationshalle unter kontrollierten Umwelteinflüssen (kein Niederschlag) Bedingungen wie in einem Feldversuch (Bestandesdichte, Düngung) zu simulieren. In den Containern stand den Pflanzen ein großes Bodenvolumen zur Verfügung, das gezielt gedüngt und bewässert wurde. Die Tomaten wuchsen in Mitscherlichgefäßen in einer Klimakammer. Da die Anlieferung von K durch Diffusion an die Wurzeln bei Dürrestress erschwert ist, bot sich als weitere Möglichkeit die flüssige Applikation von K2SO4 auf die Blätter an. Dies wurde einmalig mit einer 5%-Lösung bei den Ackerbohnen und den Tomaten durchgeführt. Alle Pflanzen erzielten durch eine bessere K-Versorgung einen höheren KEntzug und damit eine höhere intrazelluläre K-Konzentration. Das Wachstum wurde auch bei Wasserstress (Dürre und Salinität) maßgeblich durch das bessere K-Angebot gesteigert. In den Pflanzen, die im salinen Substrat mit einer optimalen K-Versorgung aufwuchsen, konnte aufgrund des Ionenantagonismus zwischen K+ und Na+ die Konzentration von Na signifikant verringert werden. Dabei wurde das K+ : Na+-Verhältnis erhöht. Die WUE konnte ebenfalls sowohl unter optimal feuchten Bodenverhältnissen als auch bei Dürrestress und Salinität durch eine höhere K-Versorgung verbessert werden. Stand den Pflanzen mehr Kalium zur Verfügung, stieg deren absoluter Wasserverbrauch an. Eine bessere K-Versorgung der Pflanzen resultierte nicht in einem verminderten Wasserverbrauch, die Transpiration bezogen auf die Blattfläche blieb unverändert. Allerdings bildeten die Pflanzen durchweg zwischen 5 und 25% in Spitzen bis zu 75% mehr TM. Die flüssige Applikation von K2SO4 auf die Blätter hatte einen positiven Effekt auf die WUE. Bei den Tomaten war der Effekt bei Dürrestress sogar signifikant stärker ausgeprägt als bei optimaler Bodenfeuchte. Diese Beziehung konnte auch bei der TM-Bildung belegt werden. Die Ackerbohnen profitierten bis zum Zeitpunkt der Blüte davon. Die einmalige Applikation hatte jedoch nur einen kurzen Effekt. So verlor sich der besondere Einfluss bei den Tomaten bereits zum zweiten Erntetermin. Die Applikation zeigte im Ertrag der Ackerbohne keinen besonderen Einfluss mehr. Der durch die bessere K-Versorgung hervorgerufene Anstieg der TMProduktion könnte mit einer gesteigerten Effizienz der H+-ATPase begründet werden. Damit könnte der Apoplast stärker angesäuert werden, was nach der Säure-Wachstums-Theorie zu einem besseren Wachstum führen sollte. Außerdem würde somit das optimale Milieu für die zellwandaufweichenden Expansine hergestellt. Die Zellwandextensibilität könnte bei unverändertem Turgor erhöht werden und somit zum Streckungswachstum beitragen.The aim of this work was to investigate the special effect of potassium (K) fertilization on plant growth. It was determined whether the plant water economy was improved due to a higher K application and how the water-use efficiency (WUE) was changed. It was hypothesized that plants reduce their water demand and are able to produce more dry matter (DM), due to higher K fertilization. To test these hypotheses, field beans (Vicia faba L.), summer wheat (Triticum aestivum L.) and tomatoes (Solanum lycoprersicum L.) were grown under various potassium and water supply. K was applied mainly as K2SO4 in optimal and deficient amounts. All plants were tested under drought stress, while the field beans additionally suffered from saline soil conditions. Under salt stress, the plants only faced osmotic problems since no ion toxicity became obvious. For the experiments with field bean and summer wheat, large containers (0,9 · 0,4 · 0,4 m; 120 L) were used to simulate field conditions. The space for each plant and fertilizer applied were according to field recommendations. Tomato plants were grown in Mitscherlich pots in a climatic chamber. Under drought stress, the diffusion of K to the roots is reduced, therefore the foliar application of a 5%-K2SO4-solution was tested for field bean and tomato. All plants showed higher intracellular K concentration and higher K content due to an improved K supply. Plant growth also increased under water stress conditions (drought and salinity) under optimal K conditions. With additional K application field beans cultivated under saline conditions were able to decrease the concentration of sodium (Na) due to the antagonism between K+ and Na+. Thus, the K+ : Na+ ratio increased by which development were not affected by salt stress. In all plants, the WUE increased after increased K fertilization under both optimal water conditions and drought as well as under salinity treatment. The total water use was increased with higher K supply in all plants and did not result in sparing water because transpiration was not decreased. However, the dry matter (DM) production of the plants increased between 5 and 25% as a result of the higher K supply. The foliar application of K2SO4 showed a positive influence on the WUE. For tomatoes this effect was significantly higher under drought stress than under optimal soil water conditions. According to the increased WUE, the DM increased significantly under drought stress because of the foliar application. The field beans tended to benefit from the foliar treatment until florescence. The one-time application of K2SO4 showed only a short-term effect. For tomatoes this effect was disappeared at the second harvest, while yield of field beans did not benefit from the foliar application at all. The increase of DM production as a consequence of the higher K application could base on an increase in the efficiency of the plasma membrane H+-ATPase. Because of this, the acidification of the apoplast could increase, which leads to an increase of cell-wall-extensibility and cell growth according to the acid-growht-theroy. Furthermore, due to the apoplastic acidification the optimum pH for cell-wall-loosening proteins such as expansions could achieve and cells were able to expand without changing the turgor

    What Stimulates Researchers to Make Their Research Usable? Towards an Openness Approach

    Get PDF
    Ambiguity surrounding the effect of external engagement on academic research has raised questions about what motivates researchers to collaborate with third parties. We argue that what matters for society is research that can be absorbed by users. We define openness as a willingness by researchers to make research more usable by external partners by responding to external influences in their own research practices. We ask what kinds of characteristics define those researchers who are more open to creating usable knowledge. Our empirical study analyses a sample of 1583 researchers working at the Spanish Council for Scientific Research (CSIC). Results demonstrate that it is personal factors (academic identity and past experience) that determine which researchers have open behaviours. The paper concludes that policies to encourage external engagement should focus on experiences which legitimate and validate knowledge produced through user encounters, both at the academic formation career stage as well as through providing ongoing opportunities to engage with third parties.The data used for this study comes from the IMPACTO project funded by the Spanish Council for Scientific Research - CSIC (Ref. 200410E639). The work also benefited from a mobility grant awarded by Eu-Spri Forum to Julia Olmos Penuela & Paul Benneworth for her visiting research to the Center of Higher Education Policy Studies. Finally, Julia Olmos Penuela also benefited from a post-doctoral grant funded by the Generalitat Valenciana (APOSTD-2014-A-006).Olmos-Peñuela, J.; Benneworth, P.; Castro-Martínez, E. (2015). What Stimulates Researchers to Make Their Research Usable? Towards an Openness Approach. Minerva. 53(4):381-410. https://doi.org/10.1007/s11024-015-9283-4S381410534Abreu, Maria, Vadim Grinevich, Alan Hughes, and Michael Kitson. 2009. Knowledge exchange between academics and the business, public and third sectors. Cambridge: Centre for Business Research and UK-IRC.Aghion, Philippe, Mathias Dewatripont, and Jeremy C. Stein. 2008. Academic freedom, private-sector focus, and the process of innovation. RAND Journal of Economics 39: 617–635.Ajzen, Icek. 2001. Nature and operation of attitudes. Annual Review of Psychology 52(1): 27–58.Alrøe, Hugo Fjelsted, and Erik Steen Kristensen. 2002. Towards a systemic research methodology in agriculture: Rethinking the role of values in science. Agriculture and Human Values 19(1): 3–23.Audretsch, David B., Werner Bönte, and Stefan Krabel. 2010. Why do scientists in public research institutions cooperate with private firms. In DRUID Working Paper, 10–27.Baldini, Nicola, Rosa Grimaldi, and Maurizio Sobrero. 2007. To patent or not to patent? A survey of Italian inventors on motivations, incentives, and obstacles to university patenting. Scientometrics 70(2): 333–354.Bandura, Albert. 1977. Social learning theory. Englewood Cliffs, NJ: Prentice-Hall.Barnett, R. 2009. Knowing and becoming in the higher education curriculum. Studies in Higher Education 34(4): 429–440.Becher, Tony. 1994. The significance of disciplinary differences. Studies in Higher Education 19(2): 151–161.Becher, Tony, and Paul Trowler. 2001. Academic tribes and territories: Intellectual enquiry and the culture of disciplines. McGraw-Hill International.Bekkers, Rudi, and Isabel Maria Bodas Freitas. 2008. Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter? Research Policy 37(10): 1837–1853.Belderbos, René, Martin Carree, Bert Diederen, Boris Lokshin, and Reinhilde Veugelers. 2004. Heterogeneity in R&D cooperation strategies. International Journal of Industrial Organization 22(8): 1237–1263.Benner, Mats, and Ulf Sandström. 2000. Institutionalizing the triple helix: Research funding and norms in the academic system. Research Policy 29(2): 291–301.Bercovitz, Janet, and Maryann Feldman. 2008. Academic entrepreneurs: Organizational change at the individual level. Organization Science 19(1): 69–89.Berman, Elizabeth Popp. 2011. Creating the market university: How academic science became an economic engine. Princeton University Press.Bleiklie, Ivar, and Roar Høstaker. 2004. Modernizing research training-education and science policy between profession, discipline and academic institution. Higher Education Policy 17(2): 221–236.Bozeman, Barry, Daniel Fay, and Catherine P. Slade. 2013. Research collaboration in universities and academic entrepreneurship: The-state-of-the-art. The Journal of Technology Transfer 38(1): 1–67.Collini, Stefan. 2009. Impact on humanities: Researchers must take a stand now or be judged and rewarded as salesmen. The Times Literary Supplement 5563: 18–19.D’Este, Pablo, and Markus Perkmann. 2011. Why do academics engage with industry? The entrepreneurial university and individual motivations. The Journal of Technology Transfer 36(3): 316–339.D’Este, Pablo, Oscar Llopis, and Alfredo Yegros. 2013. Conducting pro-social research: Cognitive diversity, research excellence and awareness about the social impact of research: INGENIO (CSIC-UPV) Working Paper Series.Deem, Rosemary, and Lisa Lucas. 2007. Research and teaching cultures in two contrasting UK policy contexts: Academic life in education departments in five English and Scottish universities. Higher Education 54(1): 115–133.DiMaggio, Paul J., and Walter W. Powell. 1983. The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review 48(2): 147–160.Downing, David B. 2005. The knowledge contract: Politics and paradigms in the academic workplace. Lincoln: Nebraska University of Nebraska Press.Donovan, Claire. 2007. The qualitative future of research evaluation. Science and Public Policy 34(8): 585–597.Durning, Bridget. 2004. Planning academics and planning practitioners: Two tribes or a community of practice? Planning Practice and Research 19(4): 435–446.Edquist, Charles. 1997. System of innovation approaches: Their emergence and characteristics. In Systems of innovation: Technologies, institutions and organizations, ed. C. Edquist, 1–35. London: Pinter.Etzkowitz, Henry, and Loet Leydesdorff. 2000. The dynamics of innovation: from National Systems and “Mode 2” to a Triple Helix of university–industry–government relations. Research Policy 29(2): 109–123.Fromhold-Eisebith, Martina, Claudia Werker, and Marcel Vojnic. 2014. Tracing the social dimension in innovation networks. In The social dynamics of innovation networks, eds. Roel Rutten, Paul Benneworth, Frans Boekema, and Dessy Irawati. London: Routledge (in press).Geuna, Aldo, and Alessandro Muscio. 2009. The governance of university knowledge transfer: A critical review of the literature. Minerva 47(1): 93–114.Gibbons, Michael, Camille Limoges, Helga Nowotny, Simon Schwartzman, Peter Scott, and Martin Trow. 1994. The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.Gläser, Jochen. 2012. How does Governance change research content? On the possibility of a sociological middle-range theory linking science policy studies to the sociology of scientific knowledge. Technical University Berlin. Technology Studies Working Papers. http://www.ts.tu-berlin.de/fileadmin/fg226/TUTS/TUTS-WP-1-2012.pdf . Accessed 16 Feb 2015.Goethner, Maximilian, Martin Obschonka, Rainer K. Silbereisen, and Uwe Cantner. 2012. Scientists’ transition to academic entrepreneurship: Economic and psychological determinants. Journal of Economic Psychology 33(3): 628–641.Gulbrandsen, Magnus, and Jens-Christian Smeby. 2005. Industry funding and university professors’ research performance. Research Policy 34(6): 932–950.Haeussler, Carolin, and Jeannette Colyvas. 2011. Breaking the ivory tower: Academic entrepreneurship in the life sciences in UK and Germany. Research Policy 40(1): 41–54.Hessels, Laurens K., Harro van Lente, John Grin, and Ruud E.H.M. Smits. 2011. Changing struggles for relevance in eight fields of natural science. Industry and Higher Education 25(5): 347–357.Hessels, Laurens K., and Harro Van Lente. 2008. Re-thinking new knowledge production: A literature review and a research agenda. Research Policy 37(4): 740–760.Hoye, Kate, and Fred Pries. 2009. ‘Repeat commercializers’, the ‘habitual entrepreneurs’ of university–industry technology transfer. Technovation 29(10): 682–689.Jacobson, Nora, Dale Butterill, and Paula Goering. 2004. Organizational factors that influence university-based researchers’ engagement in knowledge transfer activities. Science Communication 25(3): 246–259.Jain, Sanjay, Gerard George, and Mark Maltarich. 2009. Academics or entrepreneurs? Investigating role identity modification of university scientists involved in commercialization activity. Research Policy 38(6): 922–935.Jasanoff, Sheila, and Sang-Hyun Kim. 2013. Sociotechnical imaginaries and national energy policies. Science as Culture 22(2): 189–196.Jensen, Pablo. 2011. A statistical picture of popularization activities and their evolutions in France. Public Understanding of Science 20(1): 26–36.Kitcher, Philip. 2001. Science, truth, and democracy. Oxford: Oxford University Press.Knorr-Cetina, Karin. 1981. The manufacture of knowledge: An essay on the constructivist and contextual nature of science. Oxford: Pergamon Press.Kronenberg, Kristin, and Marjolein Caniëls. 2014. Professional proximity in research collaborations. In The social dynamics of innovation networks, eds. Roel Rutten, Paul Benneworth, Frans Boekema, and Dessy Irawati. London: Routledge (in press).Krueger, Rob, and David Gibbs. 2010. Competitive global city regions and sustainable development’: An interpretive institutionalist account in the South East of England. Environment and planning A 42: 821–837.Lam, Alice. 2011. What motivates academic scientists to engage in research commercialization: ‘Gold’, ‘ribbon’ or ‘puzzle’? Research Policy 40(10): 1354–1368.Landry, Réjean, Malek Saïhi, Nabil Amara, and Mathieu Ouimet. 2010. Evidence on how academics manage their portfolio of knowledge transfer activities. Research Policy 39(10): 1387–1403.Lee, Alison, and David Boud. 2003. Writing groups, change and academic identity: Research development as local practice. Studies in Higher Education 28(2): 187–200.Lee, Yong S. 1996. ‘Technology transfer’ and the research university: A search for the boundaries of university–industry collaboration. Research Policy 25(6): 843–863.Lee, Yong S. 2000. The sustainability of university–industry research collaboration: An empirical assessment. The Journal of Technology Transfer 25(2): 111–133.Leisyte, Liudvika, Jürgen Enders, and Harry De Boer. 2008. The freedom to set research agendas—illusion and reality of the research units in the Dutch Universities. Higher Education Policy 21(3): 377–391.Louis, Karen Seashore, David Blumenthal, Michael E. Gluck, and Michael A. Stoto. 1989. Entrepreneurs in academe: An exploration of behaviors among life scientists. Administrative Science Quarterly 34(1): 110–131.Lowe, Philip, Jeremy Phillipson, and Katy Wilkinson. 2013. Why social scientists should engage with natural scientists. Contemporary Social Science 8(3): 207–222.Martín-Sempere, María José, Belén Garzón-García, and Jesús Rey-Rocha. 2008. Scientists’ motivation to communicate science and technology to the public: Surveying participants at the Madrid Science Fair. Public Understanding of Science 17(3): 349–367.Martin, Ben. 2003. The changing social contract for science and the evolution of the university. In Science and innovation: Rethinking the rationales for funding and governance, eds. A. Geuna, A.J. Salter, and W.E. Steinmueller, 7–29. Cheltenhan: Edward Elgar.Merton, Robert K. 1973. The sociology of science: Theoretical and empirical investigations. Chicago: University of Chicago Press.Miller, Thaddeus R., and Mark W. Neff. 2013. De-facto science policy in the making: how scientists shape science policy and why it matters (or, why STS and STP scholars should socialize). Minerva 51(3): 295–315.Muthén, Bengt O. 1998–2004. Mplus Technical Appendices. Muthén & Muthén. Los Angeles, CA.: Muthén & Muthén.Nedeva, Maria. 2013. Between the global and the national: Organising European science. Research Policy 42(1): 220–230.Neff, Mark William. 2014. Research prioritization and the potential pitfall of path dependencies in coral reef science. Minerva 52(2): 213–235.Nelson, Richard R. 2001. Observations on the post-Bayh-Dole rise of patenting at American universities. The Journal of Technology Transfer 26(1): 13–19.Nowotny, Helga, Peter Scott, and Michael Gibbons. 2001. Re-thinking science: Knowledge and the public in an age of uncertainty. Cambridge: Polity Press.Olmos-Peñuela, Julia, Paul Benneworth, and Elena Castro-Martínez. 2014a. Are ‘STEM from Mars and SSH from Venus’? Challenging disciplinary stereotypes of research’s social value. Science and Public Policy 41: 384–400.Olmos-Peñuela, Julia, Elena Castro-Martínez, and Manuel Fernández-Esquinas. 2014b. Diferencias entre áreas científicas en las prácticas de divulgación de la investigación: un estudio empírico en el CSIC. Revista Española de Documentación Científica. doi: 10.3989/redc.2014.2.1096 .Ouimet, Mathieu, Nabil Amara, Réjean Landry, and John Lavis. 2007. Direct interactions medical school faculty members have with professionals and managers working in public and private sector organizations: A cross-sectional study. Scientometrics 72(2): 307–323.Perkmann, Markus, Valentina Tartari, Maureen McKelvey, Erkko Autio, Anders Brostrom, Pablo D’Este, Riccardo Fini, et al. 2013. Academic engagement and commercialisation: A review of the literature on university-industry relations. Research Policy 42(2): 423–442.Philpott, Kevin, Lawrence Dooley, Caroline O’Reilly, and Gary Lupton. 2011. The entrepreneurial university: Examining the underlying academic tensions. Technovation 31(4): 161–170.Rutten, Roel, and Frans Boekema. 2012. From learning region to learning in a socio-spatial context. Regional Studies 46(8): 981–992.Sarewitz, Daniel, and Roger A. Pielke. 2007. The neglected heart of science policy: reconciling supply of and demand for science. Environmental Science & Policy 10(1): 5–16.Sauermann, Henry, and Paula Stephan. 2013. Conflicting logics? A multidimensional view of industrial and academic science. Organization Science 24(3): 889–909.Schein, Edgar H. 1985. Organizational culture and leadership: A dynamic view. San Francisco, CA: Jossey-Bass.Shane, Scott. 2000. Prior knowledge and the discovery of entrepreneurial opportunities. Organization Science 11(4): 448–469.Spaapen, Jack, and Leonie van Drooge. 2011. Introducing ‘productive interactions’ in social impact assessment. Research Evaluation 20(3): 211–218.Stokes, Donald E. 1997. Pasteur’s quadrant: Basic science and technological innovation. Washington, DC: Brookings Institution Press.Tartari, Valentina, and Stefano Breschi. 2012. Set them free: scientists’ evaluations of the benefits and costs of university–industry research collaboration. Industrial and Corporate Change 21(5): 1117–1147.Tinker, Tony, and Rob Gray. 2003. Beyond a critique of pure reason: From policy to politics to praxis in environmental and social research. Accounting, Auditing & Accountability Journal 16(5): 727–761.van Rijnsoever, Frank J., Laurens K. Hessels, and Rens L.J. Vandeberg. 2008. A resource-based view on the interactions of university researchers. Research Policy 37(8): 1255–1266.Venkataraman, Sankaran. 1997. The distinctive domain of entrepreneurship research: An editor’s perspective. Advances in Entrepreneurship, Firm Emergence, and Growth 3: 119–138.Verspagen, Bart. 2006. University research, intellectual property rights and European innovation systems. Journal of Economic Surveys 20(4): 607–632.Villanueva-Felez, Africa, Jordi Molas-Gallart, and Alejandro Escribá-Esteve. 2013. Measuring personal networks and their relationship with scientific production. Minerva 51(4): 465–483.Watermeyer, Richard. 2015. Lost in the ‘third space’: the impact of public engagement in higher education on academic identity, research practice and career progression. European Journal of Higher Education (online first, doi: 10.1080/21568235.2015.1044546 ).Weingart, Peter. 2009. Editorial for Issue 47/3. Minerva 47(3): 237–239.Ziman, John. 1996. ‘Postacademic science’: Constructing knowledge with networks and norms. Science Studies 1: 67–80.Zomer, Arend H., Ben W.A. Jongbloed, and Jürgen Enders. 2010. Do spin-offs make the academics’ heads spin? The impacts of spin-off companies on their parent research organisation. Minerva 48(3): 331–353

    Comparison of FBG Wavelengths in the Region of 2/3 of the Bragg Wavelength and the Bragg Wavelength, by Piecewise Irradiation of a Chirped Phase Mask

    No full text
    By using a simple technique of UV laser irradiation at various regions along a chirped phase mask, the responses in the region of 2/3 of the Bragg wavelength (i.e. ~1030 nm) and the Bragg wavelength (~1535 nm) are investigated experimentally and compared. The variation of the wavelength of both transmission dips (in the region of the 2/3 of the Bragg wavelength and the Bragg wavelength) were proportional to the increase in periodicities of phase mask. The ratios of these wavelengths, for the irradiation of each phase mask section, showed less than 0.7% variation compared with the value of 2/3, confirming that features at ~1030 nm are the 3rd harmonic of a grating having the phase mask periodicit

    High-temperature-resistant chemical composition Bragg gratings in Er 3+-doped optical fiber

    Get PDF
    Chemical composition gratings (CCGs), unlike standard fiber Bragg gratings (FBGs), do not suffer a significant decrease in reflectance or an irreversible wavelength shift when they are exposed to elevated temperatures. To date, the growth of CCGs has been related to the fluorine content of the fibers in which they are written. It is shown that FBGs with high thermal stability, resembling CCGs, can be fabricated in Er3+-doped optical fibers that do not contain any fluorine

    Türkiye'deki demiryolu altyapısının, ekonomik büyüme ve nüfusa olan etkisi

    No full text
    Bu çalışma ulaşım altyapısı ve iki önemli değişkenæ demografik ve ekonomik değişkenler arasındaki deneysel ilişkiyi araştırmaktadır. İl bazında demiryolu uzunlukları, nüfus yoğunluğu ve tarımsal üretim değişkenleri, sırasıyla ulaşım altyapısı, demografik ve ekonomik ölçümler için kullanılmıştır. Bu çalışmanın en önemli katkısı, yazarın bilgisi dahilinde Türkiye'deki tek örneği olan veri setleridir. Türkiye için panel ekonometri veri analizi uygulanan il bazındaki bu veri setleri, zaman ve alan çerçevesinde ilişkileri araştırmak için kullanılmıştır. Değişkenler arasındaki ilişkiyi 1856 ve 2007 yılları arasında ortaya çıkarmak için panel regresyon, panel birim kök, panel eşbütünleşme ve panel nedensellik test metotları gerçekleştirilmiştir. Ulaşım altyapısı ve ekonomik gelişim değişkenleri arasındaki ilişki, farklı pek çok gelişmiş ve/veya endüstrileşmiş bölge için deneysel olarak analiz edilmiştir. Ayrıca, ulaşım altyapısı ve demografik değişkenler arasındaki ilişkiler de aynı şekilde analiz edilmiştir. Bu çalışma ise gelişmekte ve endüstrileşmekte olan Türkiye için deneysel analizler bulundurmaktadır. Bunun için, çalışmanın ikinci önemli katkısı bu analizlerdir. Üstelik ulaşım altyapısı değişkenlerinin, ekonomik ve demografik değişkenler üzerindeki etkilerini inceleyen deneysel çalışmalar geniş bir şekilde bu çalışmada sunulmuştur. Buna ilaveten, Osmanlı İmparatorluğu ve Türkiye Cumhuriyeti dönemlerindeki demiryolu ağının ve demiryolu yapım aşamalarının tarihsel gelişimleri de çalışmada sunulan diğer önemli bölümlerdir. This study explores the empirical relationship between transportation infrastructure and two measuresæ demographic and economic activity. Railway lengths, population density and agricultural production at province level base used as datasets for transportation infrastructure, demographic and economic activity measures, respectively. The most important contribution of this study is related with the datasets, which should probably be the first example for the knowledge of the author in Turkey. Using province level panel data for Turkey, panel econometric methods are applied to investigate these relationships in time and space. Panel regression, panel unit root, panel cointegration and panel causality testing procedures are performed to sort out the linkage between measures for the sample period between 1856 and 2007. The relationship between transportation infrastructure and economic development measures is empirically analyzed for many different developed or industrialized regions. Besides, the relationship between transportation infrastructure and demographic measures is also investigated in the same way. This study provides an empirical process for Turkey as a developing and not industrialized country. Therefore, this is the second important contribution of this study. In addition, an extensive overview of the empirical literature, investigating the effects of transportation infrastructure on economic and demographic measures, is provided in this study. Furthermore, a brief history of the railway constructions and railway network expansion during the Ottoman Empire and Republic of Turkey is also presented
    corecore