1,201 research outputs found

    Graviton Propagators in Supergravity and Noncommutative Gauge Theory

    Get PDF
    We investigate the graviton propagator in the type IIB supergravity background which is dual to 4 dimensional noncommutative gauge theory. We assume that the boundary is located not at the infinity but at the noncommutative scale where the string frame metric exhibits the maximum. We argue that the Neumann boundary condition is the appropriate boundary condition to be adopted at the boundary. We find that the graviton propagator behaves just as that of the 4 dimensional massless graviton. On the other hand, the non-analytic behaviors of the other Kaluza-Klein modes are not significantly affected by the Neumann boundary condition.Comment: 19 page

    R-mediation of Dynamical Supersymmetry Breaking

    Get PDF
    We propose a simple scenario of the dynamical supersymmetry breaking in four dimensional supergravity theories. The supersymmetry breaking sector is assumed to be completely separated as a sequestered sector from the visible sector, except for the communication by the gravity and U(1)_R gauge interactions, and the supersymmetry breaking is mediated by the superconformal anomaly and U(1)_R gauge interaction. Supersymmetry is dynamically broken by the interplay between the non-perturbative effect of the gauge interaction and Fayet-Iliopoulos D-term of U(1)_R which necessarily exists in supergravity theories with gauged U(1)_R symmetry. We construct an explicit model which gives phenomenologically acceptable mass spectrum of superpartners with vanishing (or very small) cosmological constant.Comment: 12 pages, to be published in Phys. Rev.

    Fermion Propagators in Type II Fivebrane Backgrounds

    Full text link
    The fermion propagators in the fivebrane background of type II superstring theories are calculated. The propagator can be obtained by explicitly evaluating the transition amplitude between two specific NS-R boundary states by the propagator operator in the non-trivial world-sheet conformal field theory for the fivebrane background. The propagator in the field theory limit can be obtained by using point boundary states. We can explicitly investigate the lowest lying fermion states propagating in the non-trivial ten-dimensional space-time of the fivebrane background: M^6 x W_k^(4), where W_k^(4) is the group manifold of SU(2)_k x U(1). The half of the original supersymmetry is spontaneously broken, and the space-time Lorentz symmetry SO(9,1) reduces to SO(5,1) in SO(5,1) x SO(4) \subset SO(9,1) by the fivebrane background. We find that there are no propagations of SO(4) (local Lorentz) spinor fields, which is consistent with the arguments on the fermion zero-modes in the fivebrane background of low-energy type II supergravity theories.Comment: 15 page

    Magnetization-plateau state of the S=3/2 spin chain with single ion anisotropy

    Full text link
    We reexamine the numerical study of the magnetized state of the S=3/2 spin chain with single ion anisotropy D(> 0) for the magnetization M=M_{S}/3, where M_{S} is the saturation magnetization. We find at this magnetization that for D<D_{c1}=0.387 the system is critical and the magnetization plateau does not appear. For D > D_{c1}, the parameter region is divided into two parts D_{c1} < D < D_{c2}=0.943 and D_{c2} < D. In each region, the system is gapful and the M=M_{S}/3 magnetization plateau appears in the magnetization process. From our numerical calculation, the intermediate region D_{c1} < D < D_{c2} should be characterized by a magnetized valence-bond-solid state.Comment: 6 pages, 8 figure

    Nucleon decay in gauge unified models with intersecting D6-branes

    Get PDF
    Baryon number violation is discussed in gauge unified orbifold models of type II string theory with intersecting Dirichlet branes. We consider setups of D6-branes which extend along the flat Minkowski space-time directions and wrap around 3-cycles of the internal 6-d manifold. The discussion is motivated by the enhancement effect of low energy amplitudes anticipated for M-theory and type II string theory models with matter modes localized at points of the internal manifold. The conformal field theory formalism is used to evaluate the open string amplitudes at tree level. We study the single baryon number violating processes of dimension 6 and 5, involving four quarks and leptons and in supersymmetry models, two pairs of matter fermions and superpartner sfermions. The higher order processes associated with the baryon number violating operators of dimension 7 and 9 are also examined, but in a qualitative way. We discuss the low energy representation of string theory amplitudes in terms of infinite series of poles associated to exchange of string Regge resonance and compactification modes. The comparison of string amplitudes with the equivalent field theory amplitudes is first studied in the large compactification radius limit. Proceeding next to the finite compactification radius case, we present a numerical study of the ratio of string to field theory amplitudes based on semi-realistic gauge unified non-supersymmetric and supersymmetric models employing the Z3 and Z2xZ2 orbifolds. We find a moderate enhancement of string amplitudes which becomes manifest in the regime where the gauge symmetry breaking mass parameter exceeds the compactification mass parameter, corresponding to a gauge unification in a seven dimensional space-time.Comment: 63 pages revtex4. 8 postscript figures. 4 tables. Subsection II.B revised. Several new references added. To appear in Physical Review

    On Climbing Scalars in String Theory

    Get PDF
    In string models with "brane supersymmetry breaking" exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V'/V| lies precisely at a "critical" value where the Lucchin--Matarrese attractor disappears while the scalar field is \emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.Comment: 14 pages, LateX, 3 eps figure

    Gravitino condensation in fivebrane backgrounds

    Full text link
    We calculate the tension of the D3-brane in the fivebrane background which is described by the exactly solvable SU(2)_k x U(1) world-sheet conformal field theory with large Kac-Moody level k. The D3-brane tension is extracted from the amplitude of one closed string exchange between two parallel D3-branes, and the amplitude is calculated by utilizing the open-closed string duality. The tension of the D3-brane in the background does not coincide with the one in the flat space-time even in the flat space-time limit: k -> infinity. The finite curvature effect should vanish in the flat space-time limit and only the topological effect can remain. Therefore, the deviation indicates the condensation of gravitino and/or dilatino which has been expected in the fivebrane background as a gravitational instanton.Comment: 16 pages, 1 figur

    Magnetic properties of the S=1/2S=1/2 distorted diamond chain at T=0

    Full text link
    We explore, at T=0, the magnetic properties of the S=1/2S=1/2 antiferromagnetic distorted diamond chain described by the Hamiltonian {\cal H} = \sum_{j=1}^{N/3}{J_1 ({\bi S}_{3j-1} \cdot {\bi S}_{3j} + {\bi S}_{3j} \cdot {\bi S}_{3j+1}) + J_2 {\bi S}_{3j+1} \cdot {\bi S}_{3j+2} + J_3 ({\bi S}_{3j-2} \cdot {\bi S}_{3j} + {\bi S}_{3j} \cdot {\bi S}_{3j+2})} \allowbreak - H \sum_{l=1}^{N} S_l^z with J1,J2,J30J_1, J_2, J_3\ge0, which well models A3Cu3(PO4)4{\rm A_3 Cu_3 (PO_4)_4} with A=Ca,Sr{\rm A = Ca, Sr}, Bi4Cu3V2O14{\rm Bi_4 Cu_3 V_2 O_{14}} and azurite Cu3(OH)2(CO3)2\rm Cu_3(OH)_2(CO_3)_2. We employ the physical consideration, the degenerate perturbation theory, the level spectroscopy analysis of the numerical diagonalization data obtained by the Lanczos method and also the density matrix renormalization group (DMRG) method. We investigate the mechanisms of the magnetization plateaux at M=Ms/3M=M_s/3 and M=(2/3)MsM=(2/3)M_s, and also show the precise phase diagrams on the (J2/J1,J3/J1)(J_2/J_1, J_3/J_1) plane concerning with these magnetization plateaux, where M=l=1NSlzM=\sum_{l=1}^{N} S_l^z and MsM_s is the saturation magnetization. We also calculate the magnetization curves and the magnetization phase diagrams by means of the DMRG method.Comment: 21 pages, 29 figure

    Recursion Relations in Liouville Gravity coupled to Ising Model satisfying Fusion Rules

    Full text link
    The recursion relations of 2D quantum gravity coupled to the Ising model discussed by the author previously are reexamined. We study the case in which the matter sector satisfies the fusion rules and only the primary operators inside the Kac table contribute. The theory involves unregularized divergences in some of correlators. We obtain the recursion relations which form a closed set among well-defined correlators on sphere, but they do not have a beautiful structure that the bosonized theory has and also give an inconsistent result when they include an ill-defined correlator with the divergence. We solve them and compute the several normalization independent ratios of the well-defined correlators, which agree with the matrix model results.Comment: Latex, 22 page

    Size-correlated polymorphisms in phyllotaxis-like periodic and symmetric tentacle arrangements in hydrozoan Coryne uchidai

    Get PDF
    Introduction: Periodic organ arrangements occur during growth and development and are widespread in animals and plants. In bilaterian animals, repetitive organs can be interpreted as being periodically arranged along the two-dimensional space and defined by two body axes; on the other hand, in radially symmetrical animals and plants, organs are arranged in the three-dimensional space around the body axis and around plant stems, respectively. The principles of periodic organ arrangement have primarily been investigated in bilaterians; however, studies on this phenomenon in radially symmetrical animals are scarce.Methods: In the present study, we combined live imaging, quantitative analysis, and mathematical modeling to elucidate periodic organ arrangement in a radially symmetrical animal, Coryne uchidai (Cnidaria, Hydrozoa).Results: The polyps of C. uchidai simultaneously formed multiple tentacles to establish a regularly angled, ring-like arrangement with radial symmetry. Multiple rings periodically appeared throughout the body and mostly maintained symmetry. Furthermore, we observed polymorphisms in symmetry type, including tri-, tetra-, and pentaradial symmetries, as individual variations. Notably, the types of radial symmetry were positively correlated with polyp diameter, with a larger diameter in pentaradial polyps than in tetra- and triradial ones. Our mathematical model suggested the selection of size-correlated radial symmetry based on the activation-inhibition and positional information from the mouth of tentacle initiation.Discussion: Our established quantification methods and mathematical model for tentacle arrangements are applicable to other radially symmetrical animals, and will reveal the widespread association between size-correlated symmetry and periodic arrangement principles
    corecore