The recursion relations of 2D quantum gravity coupled to the Ising model
discussed by the author previously are reexamined. We study the case in which
the matter sector satisfies the fusion rules and only the primary operators
inside the Kac table contribute. The theory involves unregularized divergences
in some of correlators. We obtain the recursion relations which form a closed
set among well-defined correlators on sphere, but they do not have a beautiful
structure that the bosonized theory has and also give an inconsistent result
when they include an ill-defined correlator with the divergence. We solve them
and compute the several normalization independent ratios of the well-defined
correlators, which agree with the matrix model results.Comment: Latex, 22 page