68 research outputs found

    Characterization of the MASCOT landing area by Hayabusa2

    Get PDF
    Context. After landing on C-type asteroid Ryugu, MASCOT imaged brightly colored, submillimeter-sized inclusions in a small rock. Hayabusa2 successfully returned a sample of small particles from the surface of Ryugu, but none of these appear to harbor such inclusions. The samples are considered representative of Ryugu. Aims. To understand the apparent discrepancy between MASCOT observations and Ryugu samples, we assess whether the MASCOT landing site, and the rock by implication, is perhaps atypical for Ryugu. Methods. We analyzed observations of the MASCOT landing area acquired by three instruments on board Hayabusa2: a camera (ONC), a near-infrared spectrometer (NIRS3), and a thermal infrared imager. We compared the landing area properties thus retrieved with those of the average Ryugu surface. Results. We selected several areas and landforms in the landing area for analysis: a small crater, a collection of smooth rocks, and the landing site itself. The crater is relatively blue and the rocks are relatively red. The spectral and thermophysical properties of the landing site are very close to those of the average Ryugu surface. The spectral properties of the MASCOT rock are probably close to average, but its thermal inertia may be somewhat higher. Conclusions. The MASCOT rock can also be considered representative of Ryugu. Some of the submillimeter-sized particles in the returned samples stand out because of their atypical spectral properties. Such particles may be present as inclusions in the MASCOT rock

    FKBP5 regulation on anti-PD-1 therapy

    Get PDF
    Background. Antitumor therapies targeting programmed cell death-1 (PD-1) or its ligand-1 (PD-L1) are used in various cancers. However, in glioblastoma (GBM), the expression of PD-L1 varies between patients, and the relationship between this variation and the efficacy of anti-PD-1 antibody therapy remains unclear. High expression levels of PD-L1 affect the proliferation and invasiveness of GBM cells. As COX-2 modulates PD-L1 expression in cancer cells, we tested the hypothesis that the COX-2 inhibitor celecoxib potentiates anti-PD-1 antibody treatment via the downregulation of PD-L1. Methods. Six-week-old male C57BL/6 mice injected with murine glioma stem cells (GSCs) were randomly divided into four groups treated with vehicle, celecoxib, anti-PD-1 antibody, or celecoxib plus anti-PD-1 antibody and the antitumor effects of these treatments were assessed. To verify the mechanisms underlying these effects, murine GSCs and human GBM cells were studied in vitro. Results. Compared with that with each single treatment, the combination of celecoxib and anti-PD-1 antibody treatment significantly decreased tumor volume and prolonged survival. The high expression of PD-L1 was decreased by celecoxib in the glioma model injected with murine GSCs, cultured murine GSCs, and cultured human GBM cells. This reduction was associated with post-transcriptional regulation of the co-chaperone FK506-binding protein 5 (FKBP5). Conclusions. Combination therapy with anti-PD-1 antibody plus celecoxib might be a promising therapeutic strategy to target PD-L1 in glioblastoma. The downregulation of highly-expressed PD-L1 via FKBP5, induced by celecoxib, could play a role in its antitumor effects

    MEDICAL TREATMENT OF UNRUPTURED CEREBRAL ANEURYSMS

    Get PDF
    Background: Currently there are no pharmacological therapies for patients with unruptured cerebral aneurysms. Elsewhere we showed that the mineralocorticoid receptor antagonist eplerenone prevented the formation of cerebral aneurysms in our ovariectomized hypertensive aneurysm rat model. The current pilot study evaluated whether it can be used to prevent the growth and rupture of cerebral aneurysms in hypertensive patients. Methods: Between August 2011 and May 2014, we enrolled 82 patients with 90 aneurysms in an open-label uncontrolled clinical trial. All provided prior informed consent for inclusion in this study, and all were treated with eplerenone (25-100 mg/d). The primary end points of our study were the rupture and enlargement of the cerebral aneurysms. Results: Of the 82 patients, 80 (88 unruptured aneurysms) were followed for a mean of 21.3 months (153.4 aneurysm-years); 12 patients (15.0%) permanently discontinued taking the drug. One month after the start of eplerenone administration and throughout the follow-up period, eplerenone kept the blood pressure within the normal range. Most notably, no aneurysms smaller than 9 mm ruptured or enlarged. However, of 2 large thrombosed aneurysms, 1 enlarged and the other ruptured. The overall annual rupture rate was .65%; it was 13.16% for aneurysms larger than 10 mm; the overall annual rate for reaching the primary end points was 1.30%. Conclusion: Our observations suggest that eplerenone may help to prevent the growth and rupture of unruptured cerebral aneurysms smaller than 9 mm. To assess its potential long-term clinical benefits, large clinical trials are needed

    Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Get PDF
    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission

    The Hayabusa Spacecraft Asteroid Multi-Band Imaging Camera: AMICA

    Full text link
    The Hayabusa Spacecraft Asteroid Multiband Imaging Camera (AMICA) has acquired more than 1400 multispectral and high-resolution images of its target asteroid, 25143 Itokawa, since late August 2005. In this paper, we summarize the design and performance of AMICA. In addition, we describe the calibration methods, assumptions, and models, based on measurements. Major calibration steps include corrections for linearity and modeling and subtraction of bias, dark current, read-out smear, and pixel-to-pixel responsivity variations. AMICA v-band data were calibrated to radiance using in-flight stellar observations. The other band data were calibrated to reflectance by comparing them to ground-based observations to avoid the uncertainty of the solar irradiation in those bands. We found that the AMICA signal was linear with respect to the input signal to an accuracy of << 1% when the signal level was < 3800 DN. We verified that the absolute radiance calibration of the AMICA v-band (0.55 micron) was accurate to 4% or less, the accuracy of the disk-integrated spectra with respect to the AMICA v-band was about 1%, and the pixel-to-pixel responsivity (flatfield) variation was 3% or less. The uncertainty in background zero-level was 5 DN. From wide-band observations of star clusters, we found that the AMICA optics have an effective focal length of 120.80 \pm 0.03 mm, yielding a field-of-view (FOV) of 5.83 deg x 5.69 deg. The resulting geometric distortion model was accurate to within a third of a pixel. We demonstrated an image-restoration technique using the point-spread functions of stars, and confirmed that the technique functions well in all loss-less images. An artifact not corrected by this calibration is scattered light associated with bright disks in the FOV.Comment: 107 pages, 22 figures, 9 tables. will appear in Icaru
    corecore