5,412 research outputs found
Use of self-referential (ipsative) feedback to motivate and guide distance learners
Distance learners often rely on written feedback for learning and for motivation. But feedback that is 'given' to learners and that relies on praise to motivate does not engage learners in the process of self-development. We propose that an ipsative approach to assessment and feedback based on a comparison with a learner's previous performance motivates distance learners by developing a self-awareness of progress that encourages learners to interact with feedback and apply this to future work. A study of a distance learning Masters programme in Educational Leadership indicated that formal self-referential (ipsative) feedback was largely absent. An ipsative feedback scheme was therefore developed in consultation with the tutors in which students completed a reflection on their progress in implementing past feedback. Tutors provided both an ipsative and a developmental response. Student and tutor evaluations of the scheme indicated that feedback on progress has the potential to motivate distance learners and to encourage them to act on developmental feedback, but can also raise grade expectations. Sustainable methods of applying ipsative feedback to a wide range of distance learning programmes are worth further exploration
Non-magnetic pair-breaking effect on La(Fe_{1-x}Zn_{x})AsO_{0.85} studied by NMR and NQR
As and La NMR and nuclear quadrupole resonance (NQR) studies
on Zn-substituted LaFeAsO have been performed to investigate the
Zn-impurity effects microscopically. Although superconductivity in
LaFeAsO disappears by 3% Zn substitution, we found that NMR/NQR
spectra and NMR physical quantities in the normal state are hardly changed,
indicating that the crystal structure and electronic states are not modified by
Zn substitution. Our results suggest that the suppression of superconductivity
by Zn substitution is not due to the change of the normal-state properties, but
due to strong non-magnetic pair-breaking effect to superconductivity.Comment: 5 pages, 4 figures, This paper was chosen as "Paper of Editors'
Suggestion
Pseudogap Behavior of the Nuclear Spin-lattice Relaxation Rate in FeSe Probed by Se-NMR
We conducted Se-nuclear magnetic resonance studies of the iron-based
superconductor FeSe in magnetic fields of 0.6 to 19 T to investigate the
superconducting and normal-state properties. The nuclear spin-lattice
relaxation rate divided by the temperature increases below the
structural transition temperature but starts to be suppressed
below , well above the superconducting transition temperature
, resulting in a broad maximum of at
. This is similar to the pseudogap behavior in optimally doped
cuprate superconductors. Because and decrease in the
same manner as with increasing , the pseudogap behavior in
FeSe is ascribed to superconducting fluctuations, which presumably originate
from the theoretically predicted preformed pair above .Comment: 10 pages, 4 figure
Pressure-Temperature-Magnetic Field Phase Diagram of Ferromagnetic Kondo Lattice CeRuPO
We report the temperature-pressure-magnetic field phase diagram made from
electrical resistivity measurements for the ferromagnetic (FM) Kondo lattice
CeRuPO. The ground state at zero field changes from the FM state to another
state, which is suggested to be an antiferromagnetic (AFM) state, above ~0.7
GPa, and the magnetically ordered state is completely suppressed at ~2.8 GPa.
In addition to the collapse of the AFM state under pressure and a magnetic
field, a metamagnetic (MM) transition from a paramagnetic state to a polarized
paramagnetic state appears. CeRuPO will give us a rich playground for
understanding the mechanism of the MM transition under comparable FM and AFM
correlations in the Kondo lattice.Comment: 5 pages, 5 figures, to appear in J. Phys. Soc. Jp
Signatures of the superfluid to Mott insulator transition in equilibrium and in dynamical ramps
We investigate the equilibrium and dynamical properties of the Bose-Hubbard
model and the related particle-hole symmetric spin-1 model in the vicinity of
the superfluid to Mott insulator quantum phase transition. We employ the
following methods: exact-diagonalization, mean field (Gutzwiller), cluster
mean-field, and mean-field plus Gaussian fluctuations. In the first part of the
paper we benchmark the four methods by analyzing the equilibrium problem and
give numerical estimates for observables such as the density of double
occupancies and their correlation function. In the second part, we study
parametric ramps from the superfluid to the Mott insulator and map out the
crossover from the regime of fast ramps, which is dominated by local physics,
to the regime of slow ramps with a characteristic universal power law scaling,
which is dominated by long wavelength excitations. We calculate values of
several relevant physical observables, characteristic time scales, and an
optimal protocol needed for observing universal scaling.Comment: 23 pages, 13 figure
Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice
Strong correlations can dramatically modify the thermodynamics of a quantum
many-particle system. Especially intriguing behaviour can appear when the
system adiabatically enters a strongly correlated regime, for the interplay
between entropy and strong interactions can lead to counterintuitive effects. A
well known example is the so-called Pomeranchuk effect, occurring when liquid
3He is adiabatically compressed towards its crystalline phase. Here, we report
on a novel anomalous, isentropic effect in a spin mixture of attractively
interacting fermionic atoms in an optical lattice. As we adiabatically increase
the attraction between the atoms we observe that the gas, instead of
contracting, anomalously expands. This expansion results from the combination
of two effects induced by pair formation in a lattice potential: the
suppression of quantum fluctuations as the attraction increases, which leads to
a dominant role of entropy, and the progressive loss of the spin degree of
freedom, which forces the gas to excite additional orbital degrees of freedom
and expand to outer regions of the trap in order to maintain the entropy. The
unexpected thermodynamics we observe reveal fundamentally distinctive features
of pairing in the fermionic Hubbard model.Comment: 6 pages (plus appendix), 6 figure
Identifying dynamical systems with bifurcations from noisy partial observation
Dynamical systems are used to model a variety of phenomena in which the
bifurcation structure is a fundamental characteristic. Here we propose a
statistical machine-learning approach to derive lowdimensional models that
automatically integrate information in noisy time-series data from partial
observations. The method is tested using artificial data generated from two
cell-cycle control system models that exhibit different bifurcations, and the
learned systems are shown to robustly inherit the bifurcation structure.Comment: 16 pages, 6 figure
A quantum beam splitter for atoms
An interferometric method is proposed to controllably split an atomic
condensate in two spatial components with strongly reduced population
fluctuations. All steps in our proposal are in current use in cold atom
laboratories, and we show with a theoretical calculation that our proposal is
very robust against imperfections of the interferometer.Comment: 6 pages, 3 figures, revtex
Antiferromagnetism of SrFe2As2 studied by Single-Crystal 75As-NMR
We report results of 75As nuclear magnetic resonance (NMR) experiments on a
self-flux grown high-quality single crystal of SrFe2As2. The NMR spectra
clearly show sharp first-order antiferromagnetic (AF) and structural
transitions occurring simultaneously. The behavior in the vicinity of the
transition is compared with our previous study on BaFe2As2. No significant
difference was observed in the temperature dependence of the static quantities
such as the AF splitting and electric quadrupole splitting. However, the
results of the NMR relaxation rate revealed difference in the dynamical spin
fluctuations. The stripe-type AF fluctuations in the paramagnetic state appear
to be more anisotropic in BaFe2As2 than in SrFe2As2.Comment: 4 pages, 5 figures; discussion revised; accepted for publication in
J. Phys. Soc. Jp
Local asymptotic normality for qubit states
We consider n identically prepared qubits and study the asymptotic properties
of the joint state \rho^{\otimes n}. We show that for all individual states
\rho situated in a local neighborhood of size 1/\sqrt{n} of a fixed state
\rho^0, the joint state converges to a displaced thermal equilibrium state of a
quantum harmonic oscillator. The precise meaning of the convergence is that
there exist physical transformations T_{n} (trace preserving quantum channels)
which map the qubits states asymptotically close to their corresponding
oscillator state, uniformly over all states in the local neighborhood.
A few consequences of the main result are derived. We show that the optimal
joint measurement in the Bayesian set-up is also optimal within the pointwise
approach. Moreover, this measurement converges to the heterodyne measurement
which is the optimal joint measurement of position and momentum for the quantum
oscillator. A problem of local state discrimination is solved using local
asymptotic normality.Comment: 16 pages, 3 figures, published versio
- …
