46 research outputs found

    Insight into the template effect of vesicles on the laccase-catalyzed oligomerization of N-phenyl-1,4-phenylenediamine from Raman spectroscopy and cyclic voltammetry measurements

    Get PDF
    We report about the first Raman spectroscopy study of a vesicle-assisted enzyme-catalyzed oligomerization reaction. The aniline dimer N-phenyl-1,4-phenylenediamine (=p-aminodiphenylamine, PADPA) was oxidized and oligomerized with Trametes versicolor laccase and dissolved O-2 in the presence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) vesicles (80-100 nm diameter) as templates. The conversion of PADPA into oligomeric products, poly(PADPA), was monitored during the reaction by in situ Raman spectroscopy. The results obtained are compared with UV/vis/NIR and EPR measurements. All three complementary methods indicate that at least some of the poly(PADPA) products, formed in the presence of AOT vesicles, resemble the conductive emeraldine salt form of polyaniline (PANI-ES). The Raman measurements also show that structural units different from those of "ordinary" PANI-ES are present too. Without vesicles PANI-ES-like products are not obtained. For the first time, the as-prepared stable poly(PADPA)-AOT vesicle suspension was used directly to coat electrodes (without product isolation) for investigating redox activities of poly(PADPA) by cyclic voltammetry (CV). CV showed that poly(PADPA) produced with vesicles is redox active not only at pH 1.1-as expected for PANI-ES-but also at pH 6.0, unlike PANI-ES and poly(PADPA) synthesized without vesicles. This extended pH range of the redox activity of poly(PADPA) is important for applications

    How experimental details matter. The case of a laccase-catalysed oligomerisation reaction

    Get PDF
    The Trametes versicolor laccase (TvL)-catalysed oligomerisation of the aniline dimer p-aminodiphenylamine (PADPA) was investigated in an aqueous medium of pH = 3.5, containing 80-100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid. If run under optimal conditions, the reaction yields oligomeric products which resemble the emeraldine salt form of polyaniline (PANI-ES) in its polaron state, known to be the only oxidation state of linear PANI which is electrically conductive. The vesicles serve as "templates" for obtaining products with the desired PANI-ES-like features. For this complex, heterogeneous, vesicle-assisted, and enzyme-mediated reaction, in which dissolved dioxygen also takes part as a re-oxidant for TvL, small changes in the composition of the reaction mixture can have significant effects. Initial conditions may not only affect the kinetics of the reaction, but also the outcome, i.e., the product distribution once the reaction reaches its equilibrium state. While a change in the reaction temperature from T approximate to 25 to 5 degrees C mainly influenced the rate of reaction, increase in enzyme concentration and the presence of millimolar concentrations of chloride ions were found to have significant undesired effects on the outcome of the reaction. Chloride ions, which may originate from the preparation of the pH = 3.5 solution, inhibit TvL, such that higher TvL concentrations are required than without chloride to yield the same product distribution for the same reaction runtime as in the absence of chloride. With TvL concentrations much higher than the elaborated value, the products obtained clearly were different and over-oxidised. Thus, a change in the activity of the enzyme was found to have influence not only on kinetics but also led to a change in the final product distribution, molecular structure and electrical properties, which was a surprising find. The complementary analytical methods which we used in this work were in situ UV/vis/NIR, EPR, and Raman spectroscopy measurements, in combination with a detailed ex situ HPLC analysis and molecular dynamics simulations. With the results obtained, we would like to recall the often neglected or ignored fact that it is important to describe and pay attention to the experimental details, since this matters for being able to perform experiments in a reproducible way

    Effect of Template Type on the Trametes versicolor Laccase-Catalyzed Oligomerization of the Aniline Dimer p-Aminodiphenylamine (PADPA)

    Get PDF
    Many previous studies have shown that (i) the oxidation of aniline or the aniline dimer p-aminodiphenyl-amine (PADPA) in a slightly acidic aqueous solution can be catalyzed with heme peroxidases or multicopper laccases and that (ii) subsequent reactions lead to oligomeric or polymeric products, which resemble chemically synthesized polyaniline in its conductive emeraldine salt form (PANI-ES), provided that (iii) an anionic "template" is present in the reaction medium. Good templates are anionic polyelectrolytes, micelles, or vesicles. Under optimal conditions, their presence directs the reactions in a positive way toward the desired formation of PANI-ES-type products. The effect of four different types of anionic templates on the formation of PANI-ES-like products from PADPA was investigated and compared by using Trametes versicolor laccase (TvL) as a catalyst in an aqueous pH 3.5 solution at room temperature. All four templates contain sulfonate groups: the sodium salt of the polyelectrolyte sulfonated polystyrene (SPS), micelles from sodium dodecylbenzenesulfonate (SDBS), vesicles from a 1:1 molar mixture of SDBS and decanoic acid, and vesicles from sodium bis(2-ethylhexyl) sulfosuccinate (AOT). Although with all four templates, stable, inkjet-printable solutions or suspensions consisting of PANI-ES-type products were obtained under optimized conditions, considerably higher amounts of TvL were required with SDBS micelles to achieve comparable monomer conversion to PANI-ES-like products during the same time period when compared to those with SPS or the two types of vesicles. This makes SDBS micelles less attractive as templates for the investigated reaction. In situ UV/vis/near-infrared, electron paramagnetic resonance (EPR), and Raman spectroscopy measurements in combination with an high-performance liquid chromatography analysis of extracted reaction products, which were deprotonated and chemically reduced, showed seemingly small but significant differences in the composition of the mixtures obtained when reaching reaction equilibrium after 24 h. With the two vesicle systems, the content of unwanted substituted phenazine units was lower than in the case of SPS polyelectrolyte and SDBS micelles. The EPR spectra indicate a more localized, narrower distribution of electronic states of the paramagnetic centers of the PANI-ES-type products synthesized in the presence of the two vesicle systems when compared to that of the similar products obtained with the SPS polyelectrolyte and SDBS micelles as templates. Overall, the data obtained from the different complementary methods indicate that with the two vesicle systems structurally more uniform (regular) PANI-ES-type products formed. Among the two investigated vesicle systems, for the investigated reaction (oxidation of PADPA with TvL and O-2), AOT appears a somewhat better choice as it leads to a higher content of the PANI-ES polaron form

    Quantum-Phase Transitions of Interacting Bosons and the Supersolid Phase

    Full text link
    We investigate the properties of strongly interacting bosons in two dimensions at zero temperature using mean-field theory, a variational Ansatz for the ground state wave function, and Monte Carlo methods. With on-site and short-range interactions a rich phase diagram is obtained. Apart from the homogeneous superfluid and Mott-insulating phases, inhomogeneous charge-density wave phases appear, that are stabilized by the finite-range interaction. Furthermore, our analysis demonstrates the existence of a supersolid phase, in which both long-range order (related to the charge-density wave) and off-diagonal long-range order coexist. We also obtain the critical exponents for the various phase transitions.Comment: RevTex, 20 pages, 10 PostScript figures include

    Determination of the formal redox potentials of the cyanhaemoglobin/cyanmethaemoglobin and the myoglobin/metmyoglobin couples at neutral pH

    Full text link
    Determination of a representative formal redox potential of the Fe(II)/Fe(III) redox couple in cyanhaemoglobin, at pH = 7 and related to the state in solution, was the objective of this work. It was achieved at low concentrations of the protein (5 μM) to circumvent undesired adsorption. Square-wave voltammetry instead of classical cyclic voltammetry was applied because this method is more sensitive and provides information on the formal redox potential and reversibility, even for rapid processes. We obtained E°′ = − 0.12 ± 0.01 V for cyanhaemoglobin and E°′ = − 0.10 ± 0.01 V, vs. SHE, for myoglobin in comparison. These values differ by only 20 mV because the two Fe(II)/Fe(III) redox centres are embedded in closely resembling chemical environments. The small difference is probably owed to the additional axially coordinating cyanide ligand in cyanmethaemoglobin which slightly favours the Fe(III) state in the haem macrocycle

    Reaction of Ferrate(VI) with ABTS and Self-Decay of Ferrate(VI): Kinetics and Mechanisms

    No full text
    Reactions of ferrate(VI) during water treatment generate perferryl(V) or ferryl(IV) as primary intermediates. To better understand the fate of perferryl(V) or ferryl(IV) during ferrate(VI) oxidation, this study investigates the kinetics, products, and mechanisms for the reaction of ferrate(VI) with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and self-decay of ferrate(VI) in phosphate-buffered solutions. The oxidation of ABTS by ferrate(VI) via a one-electron transfer process produces ABTS•+ and perferryl(V) (k = 1.2 × 106 M–1 s–1 at pH 7). The perferryl(V) mainly self-decays into H2O2 and Fe(III) in acidic solution while with increasing pH the reaction of perferryl(V) with H2O2 can compete with the perferryl(V) self-decay and produces Fe(III) and O2 as final products. The ferrate(VI) self-decay generates ferryl(IV) and H2O2 via a two-electron transfer with the initial step being rate-limiting (k = 26 M–1 s–1 at pH 7). Ferryl(IV) reacts with H2O2 generating Fe(II) and O2 and Fe(II) is oxidized by ferrate(VI) producing Fe(III) and perferryl(V) (k = 107 M–1 s–1). Due to these facile transformations of reactive ferrate(VI), perferryl(V), and ferryl(IV) to the much less reactive Fe(III), H2O2, or O2, the observed oxidation capacity of ferrate(VI) is typically much lower than expected from theoretical considerations (i.e., three or four electron equivalents per ferrate(VI)). This should be considered for optimizing water treatment processes using ferrate(VI)

    Application of an enzymatic cascade reaction for the synthesis of the emeraldine salt form of polyaniline

    No full text
    The synthesis of the emeraldine salt form of polyaniline (PANI-ES) from aniline with Aspergillus sp. glucose oxidase (GOD), d-glucose, dissolved O2, and horseradish peroxidase isoenzyme C (HRPC) in the presence of large unilamellar vesicles of AOT (sodium bis-(2-ethylhexyl)sulfosuccinate) as templates at pH = 4.3 and T ~ 25 °C was investigated in a systematic way. In this cascade reaction mixture, the oxidation of aniline is catalyzed by HRPC with H2O2 that is formed in situ as byproduct of the GOD-catalyzed oxidation of d-glucose with O2. Under the elaborated experimental conditions which we considered ideal, the formation of PANI-ES products is evident, as judged by UV/Vis/NIR and EPR measurements. Comparison was made with a reference reaction, which was run under similar conditions with added H2O2 instead of GOD and d-glucose. Although the reference reaction was found to be superior, with the cascade reaction, PANI-ES products can still be obtained with high aniline conversion (> 90%) within 24 h as stable dark green PANI-ES/AOT vesicle dispersion. Our results show that the in situ formation of H2O2 does not prevent the inactivation of HRPC known to occur in the reference reaction. Moreover, the GOD used in the cascade reaction is inactivated as well by polymerization intermediates.ISSN:0366-6352ISSN:1336-9075ISSN:2585-729

    Reversible metal-centered reduction empowers a Ni-Corrin to mimic F430

    Full text link
    This communication presents a novel truncated NiII-containing metbalamin and describes its reversible one electron reduction to a catalytically active NiI species, that features cofactor F430 model character. Our results strikingly demonstrate that stabilization of NiI is not restricted to the related hydroporhyrinoid ligands and is of relevance to the application of metallocorrins in (biomimetic) catalysis
    corecore