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ABSTRACT: Many previous studies have shown that (i) the Laccase ! 1
oxidation of aniline or the aniline dimer p-aminodiphenyl- @ Q ;\©\ /©/ ;@\
amine (PADPA) in a slightly acidic aqueous solution can be 0, 4/:‘?‘ H A8 N JCh rﬂ‘ 1
catalyzed with heme peroxidases or multicopper laccases and » %ﬁﬂ% " o
that (ii) subsequent reactions lead to oligomeric or polymeric " % y_y‘ PANI-ES-like
products, which resemble chemically synthesized polyaniline N * roducts

in its conductive emeraldine salt form (PANI-ES), provided ©/ \©\“/H P

that (iii) an anionic “template” is present in the reaction E

medium. Good templates are anionic polyelectrolytes, ¢ %/-
micelles, or vesicles. Under optimal conditions, their presence PADPA 0:.5%. %’

directs the reactions in a positive way toward the desired
formation of PANI-ES-type products. The effect of four gyifonated Vesicles, Micelles or Polyelectrolyte as template
different types of anionic templates on the formation of PANI-

ES-like products from PADPA was investigated and compared by using Trametes versicolor laccase (TvL) as a catalyst in an
aqueous pH 3.5 solution at room temperature. All four templates contain sulfonate groups: the sodium salt of the
polyelectrolyte sulfonated polystyrene (SPS), micelles from sodium dodecylbenzenesulfonate (SDBS), vesicles from a 1:1 molar
mixture of SDBS and decanoic acid, and vesicles from sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Although with all four
templates, stable, inkjet-printable solutions or suspensions consisting of PANI-ES-type products were obtained under optimized
conditions, considerably higher amounts of TvL were required with SDBS micelles to achieve comparable monomer conversion
to PANI-ES-like products during the same time period when compared to those with SPS or the two types of vesicles. This
makes SDBS micelles less attractive as templates for the investigated reaction. In situ UV/vis/near-infrared, electron
paramagnetic resonance (EPR), and Raman spectroscopy measurements in combination with an high-performance liquid
chromatography analysis of extracted reaction products, which were deprotonated and chemically reduced, showed seemingly
small but significant differences in the composition of the mixtures obtained when reaching reaction equilibrium after 24 h.
With the two vesicle systems, the content of unwanted substituted phenazine units was lower than in the case of SPS
polyelectrolyte and SDBS micelles. The EPR spectra indicate a more localized, narrower distribution of electronic states of the
paramagnetic centers of the PANI-ES-type products synthesized in the presence of the two vesicle systems when compared to
that of the similar products obtained with the SPS polyelectrolyte and SDBS micelles as templates. Overall, the data obtained
from the different complementary methods indicate that with the two vesicle systems structurally more uniform (regular)
PANI-ES-type products formed. Among the two investigated vesicle systems, for the investigated reaction (oxidation of PADPA
with TvL and O,), AOT appears a somewhat better choice as it leads to a higher content of the PANI-ES polaron form.
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form (PANI-ES) has been a scientific challenge for many
research groups during the last years.' >’ The reasons for this
are the many possible applications of conductive polyani-
line,>*™** even for biomedical applications (for example, in
tissue engineering).%‘?’6 Due to the polymeric nature of PANI-
ES products and their insolubility in common solvents,””
independent of whether they are obtained through electro-
chemical,®* chemical,>*>® 3940
routes, the analysis of the chemical structure of PANI-ES-type
products is often difficult or impossible. By using p-amino-
diphenylamine (PADPA) instead of aniline, the situation in
terms of product analysis is much better.'”*' =

Based on our previous detailed investigations of the
Trametes versicolor laccase (TvL)/O,-catalyzed oxidative
oligomerization of PADPA (Scheme 1) in the presence of
100 nm sized vesicles from sodium bis(2-ethylhexyl)-
sulfosuccinate (AOT, Chart 1) as “templates” at pH 3.5 (0.1
M NaH,PO,),"” "> we questioned whether other templates
with sulfonate groups can also be used successfully for the
same reaction, and if yes, how the outcome of the reaction
compares with the one using AOT vesicles. By the term

enzymatic, or enzyme-mimicking

Scheme 1. Reaction Scheme for the Oxidation and
Oligomerization of the Aniline Dimer p-Aminodi-
phenylamine (PADPA) with T. versicolor Laccase (TvL)/O,
into Products That Consist of Tetraaniline Repeating Units
in a Polaron or Bipolaron (Dication) State,'” the Smallest
Units of the Ideal Emeraldine Salt Form of Polyaniline
(PANI-ES)>*“
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“The polaron state is shown as a diradical dication form with either
polaron pairs or with separated, delocalized polarons (two semi-
quinone radical cations). The templates, consisting of anionic groups
A", promote the formation of PANI-ES.
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Chart 1. Chemical Structures of Sodium Bis(2-
ethylhexyl)sulfosuccinate (AOT), “Sodium
Dodecylbenzenesulfonate” (SDBS, a Mixture of Different
Isomers),"*%>%® Decanoic Acid (DA), and Sulfonated
Polystyrene (SPS, as Sodium Salt, Assuming a Sulfonation
Level of 100%;%*7%° M,, = 70 000 Da, n =~ 330)
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“template”, we mean an additive that has a desired influence on
the outcome of a chemical or enzymatic reaction in terms of
chemical structure so that the structure is “dictated” by the
template molecules.'>*' = For the particular case investigated,
the desired reaction products should resemble PANI-ES
(Scheme 1)."°* The templates chosen for the comparison
with AOT vesicles were vesicles formed from a 1:1 molar
mixture of sodium dodecylbenzenesulfonate (SDBS) and
decanoic acid (DA), SDBS micelles, and the sodium salt of
the polyelectrolyte sulfonated polystyrene (often abbreviated
as SPS). For the chemical structures of the template-forming
molecules, see Chart 1. SDBS micelles were already applied for
the Trametes hirsuta laccase/O,-catalyzed oligomerization of
PADPA by Shumakovich et al,® and all four templates were
previously used for the enzymatic polymerization of aniline:
SPS polyelectrolyte,' > SDBS micelles,”***” SDBS/DA (1:1)
vesicles,'> and AOT vesicles."*'®'” In all of these previous
cases, the aim was to obtain products with spectroscopic
properties that are characteristic for the linear conductive form
of PANIL-ES: (i) they must have a green color with high
absorption in the near-infrared (NIR) region, at about 800—
1000 nm or above, and they must have an absorption band at
about 420 nm due to the formation of polarons (radical
cations) for which the templates act as counter ions
(dopants);**>>™°* (ii) they must have a low absorption at
about 500—600 nm since this is indicative of a low extent of
branching” or undesired phenazine-type structural unit
formation;* (iii) they must have characteristic Raman bands
originating from C—N°®* stretching vibrations of polaronic
structures (at about 1320—1380 cm™');*****>*” and (iv) they
must be paramagnetic due to the polarons, ie., an electron
paramagnetic resonance (EPR) spectrum should be meas-
urable, 15586061

In a previous investigation by Liu et al,” the effect of
different templates on the horseradish peroxidase/H,0,-
mediated polymerization of aniline was compared; it was
found that the use of SDBS micelles or SPS polyelectrolyte was
an improvement over cationic, nonionic, or other anionic
templates (bearing carboxylate or phosphate groups).” We
now report about a comparison of template effects on a related
enzymatic reaction, the TvL/O,-mediated oligomerization of
the aniline dimer PADPA, by using different sulfonate-group-
bearing templates only. The focus was set on a comparison of
the template type, i.e., polyelectrolyte versus micelles versus
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vesicles. To the best of our knowledge, this is the first
systematic approach for such comparison, although Zhang et
al*” already reported about a comparison of the Aspergillus
laccase/O,-mediated polymerization of aniline in the presence
of a micellar template (SDBS) or of a polyelectrolyte
(ligninosulfonate). The use of ligninosulfonate was shown to
have advantages over SDBS micelles.”” Furthermore, de Salas
et al.”” used a high-potential laccase engineered and expressed
in Saccharomyces cerevisiae for the oxidative polymerization of
aniline in the presence of an anionic template (either AOT
vesicles, SDBS micelles, or sodium lauryl ether sulfate
micelles); SDBS micelles were found to be superior.”’

The use of PADPA as a monomer instead of aniline has both
benefits and drawbacks. The main reaction products are
PADPA oligomers only,'”*"** which is a disadvantage if one
aims at synthesizing polymeric molecules. However, at the
same time, it is also an advantage since PADPA oligomers (in
their neutral form) can be extracted from the reaction mixture
into an organic solvent, separated chromato%rafhically, and
then analyzed by mass spectrometry (MS).'”*"** With such
analysis, it could be shown that the presence of AOT vesicles
in the case of the TvL/O,-catalyzed oligomerization of PADPA
completely suppresses the formation of undesired side
products that contain oxygen atoms (which originate from
the hydrolysis of reaction intermediates if AOT vesicles are
absent).”’!

Our aim of comparing the effects of different types of
templates on the TvL/O,-catalyzed oligomerization of PADPA
is apparently an experimentally simple task. However, the
choice of conditions under which the comparison should
actually be made is not straightforward. It would be too simple,
for example, to compare the AOT vesicle template system with
the SDBS micelle system using identical amphiphile concen-
trations in both cases. AOT in 0.1 M NaH,PO, solution at pH
3.5, the optimal reaction conditions, forms bilayered vesicles at
a critical concentration for vesicle formation (cvc) of about 0.4
mM."**” On the other hand, SDBS in the same aqueous
solution forms micelles at a critical concentration for micelle
formation (cmc) that may be different from the cvc of AOT
vesicles; vesicles and micelles are different types of
polymolecular assemblies. Literature values for the cmc value
of SDBS (a complex mixture of isomers)'**>** at 25 °C in
water are 3.1,°° 2.7-2.9,°% 1.4-1.9,°7° or 1.2 mM.”" Although
the values deviate, possibly due to the different sources of
SDBS and the method of cmc determination, the cmc value for
SDBS in the pH 3.5 solution used (0.1 M NaH,PO,) is
expected to be lower than the cmc value determined in
deionized water;”> see Section 3. SPS, for which we assume
that it is sulfonated in each repeating unit,"*"*° is a
macromolecule and as such has not much in common with a
vesicle. Based on these considerations, we decided to first
optimize for each of the three new templates, SPS, SDBS
micelles, and SDBS/DA (1:1) vesicles, the reaction conditions
but keeping (i) the aqueous solution the same, 0.1 M
NaH,PO, (pH = 3.5, prepared from NaH,PO, and phosphoric
acid),”” (ii) the PADPA concentration the same (1.0 mM),
and (iii) the TvL concentration the same (2.6 nM). These are
the conditions that we found to be ideal for a reproducible
reaction with 100 nm sized AOT vesicles at an AOT
concentration of 1.5 mM.>

The reaction optimizations for SDBS/DA (1:1) vesicles,
SDBS micelles, and the SPS polyelectrolyte were carried out
on the basis of the following criteria (see also above). First,
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there should be no product precipitation during and after the
reaction, i.e., a stable solution or suspension should result from
the reaction. Second, the products should have a high
absorbance at ~#1000 nm (A40), a band at 2420 nm, and
a low absorbance at ~500 nm (A.s). The reaction
optimization was performed by systematic UV/vis/NIR
absorption measurements and visual inspections (detection
of precipitation). After identification of the conditions we
considered optimal for each template, direct comparisons were
made not only by detailed in situ UV/vis/NIR measurements
but also by in situ EPR and in situ Raman spectroscopy
measurements, as well as by an high-performance liquid
chromatography (HPLC)—MS analysis of the extracted,
deprotonated, and chemically reduced reaction products, and
by tests of the inkjet-printability of the as-obtained reaction
solutions or suspensions. The aim of the HPLC—MS analysis
was to obtain comparative information about the PADPA
conversion and the product distribution.

2. MATERIALS AND METHODS

2.1. Materials. Laccase from T. versicolor (TvL, EC
1.10.3.2; product no. 51639, 13.6 U mg_l, lot no.
BCBF7247 V), docusate sodium salt (AOT, bis(2-ethylhexyl)-
sulfosuccinate sodium salt, BioUltra, >99.0%), poly(sodium 4-
styrenesulfonate) (SPS, average M,, = 70 000 Da), 2,2 -azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt
(ABTS(NH,),, >98%), sodium phosphate monobasic
(NaH,PO,, > 99.0%), acetonitrile (for HPLC or for UV
spectroscopy, >99.9%), hydrazine hydrate (50—60%), and
pinacyanol chloride were purchased from Sigma-Aldrich.
Decanoic acid (DA, > 99%), ethanol (99.99%), orthophos-
phoric acid (H;PO,, 85%), and tert-butyl methyl ether
(MTBE, >99.0%) were purchased from Fluka. Ammonia
solution (25%) was purchased from Merck. Dodecylbenzen-
sulfonic acid sodium salt (SDBS, hard type, >95%) was
purchased from TCI Europe. Dichloromethane (99.5%) was
purchased from J.T. Baker. N-Phenyl-p-phenylenediamine (p-
aminodiphenylamine, PADPA, 98%) was from either Sigma-
Aldrich or abecr GmbH, purified by recrystallization from
hexane, four to five times until white crystals were obtained. All
other chemicals were used as obtained.

2.2. Preparation of pH 3.5 Phosphate Solution and
PADPA Stock Solution. A pH 3.5 phosphate solution (0.1
M) was prepared at room temperature (RT) by first dissolving
0.1 mol of NaH,PO, in deionized water to yield a total volume
of 1 L, followed by adjustment of the pH value with 1 M
H,PO, (and not HCI)** until pH 3.5. This solution is called
“pH 3.5 solution”. A stock solution of 0.15 M PADPA in
ethanol was prepared by dissolving 13.8 mg of PADPA in 500
UL of ethanol. This solution was stored in a refrigerator at T =
7 °C and used within 1 day.

2.3. Preparation of AOT Vesicles. Vesicle suspensions of
20 mM AOT, consisting of mainly unilamellar vesicles with an
average diameter of about 100 nm, were prepared with the
freeze—thaw/extrusion method, as described before.'*!%*!
The amount of 0.178 g of AOT (0.4 mmol) was dissolved
in about 5 mL of chloroform. This AOT solution was added to
a 250 mL round-bottom glass flask, and the solvent was
removed by rotary evaporation to form a thin AOT film,
followed by high vacuum drying overnight. The dry AOT film
was then hydrated by slowly vortexing at RT with 20 mL of the
pH 3.5 solution. The obtained AOT vesicle suspension was
frozen by placing the round-bottom flask into liquid nitrogen
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and then thawed in a water bath heated to 60 °C. This
freezing—thawing process was repeated 10 times. Afterward,
the suspension was extruded five times through a 200 nm
Nuclepore polycarbonate membrane and then 10 times
through a 100 nm membrane using the Extruder from Lipex
Biomembranes (Vancouver, Canada).”> The thus-prepared
vesicle suspensions were stored at RT and used within 3 weeks
([AOT] = 20 mM, [NaH,PO,] + [H;PO,] = 0.1 M, pH =
3.5).

2.4. Preparation of SDBS/Decanoic Acid (1:1)
Vesicles. Vesicle suspensions of equimolar amounts of
SDBS and decanoic acid (DA) were prepared with the
freezing—thawing/extrusion method as described before.*?
The amounts of 0.1394 g of SDBS (0.4 mmol) and 0.0689 g
of DA (0.4 mmol) were dissolved in about § mL of chloroform
and added to a 250 mL round-bottom glass flask. The next
steps were the same as described for the preparation of AOT
vesicles. The resulting SDBS/DA (1:1) vesicle suspension was
stored at RT and used within 3 weeks ([SDBS] = [DA] = 20
mM, [NaH,PO,] + [H,PO,] = 0.1 M, pH = 3.5).

2.5. Preparation of SDBS Micelles. A 20 mM SDBS
micellar solution was prepared at RT by dissolving 0.1394 g
(0.4 mmol) of SDBS in 20 mL of pH = 3.5 solution. The
micellar solution was stored at RT and used within 1 month
([SDBS] = 20 mM, [NaH,PO,] + [H;PO,] = 0.1 M, pH =
3.5).

The critical concentration for SDBS micelle formation
(cmc) was determined in the same way as described before.”*
A methanolic stock solution of pinacyanol chloride was first
prepared by dissolving 1.36 mg of pinacyanol chloride (3.5
umol) in 10 mL of methanol. A volume of S uL of this stock
solution was added to 0.6 mL of SDBS solution of defined
concentration (prepared in pH 3.5 solution), and the
absorbance at 606 nm (Agy) was measured with a Jasco V-
670 UV/vis/NIR spectrophotometer using a 1.0 cm quartz
cuvette ([pinacyanol chloride] = 2.9 uM). From a plot of A4
versus molar SDBS concentration, the cmc value was taken as
the SDBS concentration at which the value of Ay started to
increase.

2.6. Preparation of SPS Polyelectrolyte Solution. SPS
was dissolved in the pH 3.5 solution at 0.08248 g per 20 mL of
the pH 3.5 solution. The concentration of SPS repeating units,
[SPS r.u.], was calculated by taking into account the molar
mass of the ru, M(NaCgH,SO;) = 206.19 g mol™". This
polyelectrolyte solution was stored at RT and used within 1
month ([SPS r.u.] = 20 mM, [NaH,PO,] + [H,PO,] = 0.1 M,
pH = 3.5).

2.7. Dynamic Light Scattering (DLS) and Cryogenic
Transmission Electron Microscopy (Cryo-TEM) Meas-
urements. Dynamic light scattering (DLS) measurements
were carried out with Malvern Zetasizer Nano and disposable
polystyrene microcuvettes (40 ,uL). The cryogenic trans-
mission electron microscopy (cryo-TEM) analysis was
performed in the same way as described before.””

2.8. Preparation of Laccase Stock Solution. A laccase
stock solution was prepared as follows.”” The amount of 12.92
mg of laccase (TvL) powder was first added to a 1.5 mL
polypropylene Eppendorf tube. Afterward, 1.0 mL deionized
water was added and the tube was slowly agitated. The
solution was centrifuged with Eppendorf centrifuge 5415 D
(6000 rpm, 2 min). Afterward, the supernatant solution was
diluted 1:9 (v/v) with deionized water and the molar
concentration of active TvL was estimated as described
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before.'” This diluted solution yielded [TvL] ~ 1.6 uM and
was kept in the refrigerator at T &~ 7 °C and used within 1
week.

2.9. Laccase Activity and Stability in the Presence of
Templates. The activity of TvL was measured spectrophoto-
metrically with 0.25 mM ABTS?" as the substrate in the pH 3.5
solution at RT, as described before.'” A Cary 1E spectropho-
tometer (from Varian) and 1.5 mL quartz cuvettes with a path
length of 1 cm were used. The assay solution was prepared by
first adding 935 uL of a pH 3.5 solution to the cuvette.
Afterward, 50 uL of an ABTS?™ stock solution (S mM in pH
3.5 solution) was added, finally followed by 15 uL of a TvL
solution containing a defined amount of one of the templates,
stored for a desired period of time (2.6 nM TvL). After gentle
mixing, the solution was incubated for (tf) 7 min and the
increase of A,,, originating from the formation of ABTS®",
was measured for 3 min at RT. The relative TvL activity is
expressed as AA,,/At (7).

2.10. Reaction Mixtures. All reactions were carried out in
volumes of 10 mL within 50 mL Schott glass bottles, closed
with a screw cap. Defined volumes of the different separately
prepared stock solutions were added in the following sequence:
(a) pH 3.5 solution; (b) template stock solution; (c) PADPA
stock solution; and (d) TvL stock solution. After mixing by
gentle agitation (set to reaction time t = 0), the reaction
mixtures were left standing in the closed bottles at RT until the
screw cap was removed for withdrawing a portion of the
reaction mixtures for analysis by one of the methods. Details
about the various volumes of the stock solutions used for the
four different template systems (i—iv) are given in Table S-1
for each of the elaborated optimal conditions (always
[PADPA] = 1.0 mM, pH = 3.5) ([NaH,PO,] + [H,PO,] =
0.1 M): (i) [AOT] = 1.5 mM, [TvL] = 2.6 nM; (i) [SDBS] =
[DA] = 1.0 mM, [TvL] = 2.6 nM; (iii) [SDBS] = 1.7 mM,
[TvL] = 2.6 or 26 nM; (iv) [SPS r.u.] = 2.9 mM, [TvL] = 2.6
nM.

2.11. UV/Vis/NIR Spectroscopy Measurements. In situ
UV/vis/NIR spectroscopy measurements were carried out
with a JASCO V-670 spectrophotometer. Volumes of 0.3 mL
were withdrawn from the reaction mixtures at desired time
points. The absorption spectrum was recorded from 1500 to
190 nm using quartz cuvettes (path length: 0.1 cm, volume: 0.3
mL).

2.12. EPR Spectroscopy Measurements. In situ EPR
spectroscopy measurements were carried out with a Bruker
EMX X-band spectrometer equipped with a TM cavity in the
same way as described before.””

2.13. Raman Spectroscopy Measurements. In situ
Raman spectroscopy measurements were carried out with a
DXR Raman microscope (Thermo Scientific), equipped with a
research optical microscope and a charge-coupled device
detector. A HeNe gas laser was used with an excitation
wavelength of 633 nm, as described before.””** The Raman
spectra of the reaction products were recorded from 2000 to
300 cm™' without interrupting the ongoing reactions and
without isolation of the reaction products, ie., in situ, by
withdrawing aliquots of S yL volume from the same reaction
mixture at specified reaction times and transferring them into
sample wells at the sample slide (Gold EZ-Spot Micro Mount
sample slide, from Thermo Scientific). Each spectrum was
measured for a new aliquot taken from the reaction mixture at
the specified time and transferred into the empty and clean
sample well. The slide with the sample of the reaction mixtures
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was placed on an X—Y motorized sample stage, and the laser
beam was focused on the sample using an objective
magnification of 10X. The scattered light was analyzed by
the spectrograph with a 600 lines mm™" grating. The laser
power on the sample was kept at 5.0 mW (when SDBS/DA
(1:1) vesicles, SDBS micelles, and the SPS polyelectrolyte were
used as templates) or 4.0 mW (in the case of AOT vesicles).
The spectra were recorded using 10 s exposure time and 10
exposures per spectrum. All Raman spectra are shown after
automated fluorescence correction performed by OMNIC
software (Thermo Scientific).

2.14. HPLC Measurements. The ex situ HPLC analysis of
the reaction products was carried in exactly the same way as
described before.”**

2.15. Test of Inkjet-Printability. The as-obtained
reaction mixtures were tested for their inkjet-printability on
ordinary white paper (XEROX Business, 80 g m™2) using a
thermal desktop inkjet printer (Hewlett Packard Deskjet
980cxi; 600 X 600 dpi; DIN A4 format) in the same way as
described before.'” Each pattern was overprinted for a total of
eight passes at the same place to increase the amount of
deposited reaction mixture.

3. RESULTS AND DISCUSSION

3.1. Characteristics of the Different Templates Used.
Aqueous pH 3.5 suspensions or solutions of the four templates
used, extruded AOT or SDBS/DA (1:1) vesicles, SDBS
micelles, and the polyelectrolyte SPS, were analyzed in terms of
average size by dynamic light scatterin$ (DLS) at room
temperature (Figure 1A). As expected,'”'* the vesicles had
sizes of about 100 nm (hydrodynamic diameter, Dj), whereas
the SDBS micelles were shown to be much smaller (D, =~ 6
nm). Cryogenic transmission electron microscopy (cryo-TEM)
measurements confirmed the presence of vesicles in the two
vesicle suspensions. The detected vesicles were spherical and
mainly unilamellar with sizes in the expected range (Figure
1B,C). For the SDBS micelles and SPS polyelectrolyte samples,
cryo-TEM did not show any features that could be assigned to
micelles or polyelectrolytes (Figure S-1). The cvc values for the
AOT vesicle system were determined previously under
comparable conditions, (~0.4 mM);'* for the SDBS/DA
(1:1) vesicles, the cvc is expected to be similar. Determinations
of the cmc value for SDBS micelles with pinacyanol chloride
yielded ~0.3 mM (Figure 1D).

The DLS analysis of the SPS solution gave an average value
of the hydrodynamic diameter (Dy) of about 13 nm (Figure
1A). Although we did not further examine the state of SPS
(average M,, = 70 000 Da) in the pH 3.5 phosphate solution
used, it is likely that SPS in aqueous salt solution “clusters
dynamically” (meaning “temporal aggregate formation”).”%”"*
This is schematically shown in Figure 1E, where for the sake of
completeness schematic representations of SDBS micelles,
SDBS/DA (1:1) vesicles, and AOT vesicles are given. A
common feature of all four temglates is that they all are soft,
dispersed interface-rich systems’’ bearing negatively charged
hydrophilic soluble sulfonate groups, which are exposed to the
aqueous bulk solution.

3.2. Optimal Conditions for the Laccase/O,-Catalyzed
Oxidation of PADPA in the Presence of SDBS/DA (1:1)
Vesicles, SDBS Micelles, or SPS Polyelectrolyte. As
already pointed out in Section 1, in our previous report on
the TvL/O,-catalyzed oligomerization of PADPA in the
presence of extruded AOT vesicles, the following initial
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Figure 1. Characteristics of the four templates used (pH = 3.5, 0.1 M
NaH,PO,, 25 °C). (A) DLS analysis: mean diameters (+standard
deviations from the analysis of three samples each) were for the AOT
vesicles, 110 + 3 nm (PDI = 0.19, 20 mM AQOT), for the SDBS/DA
(1:1) vesicles, 96 + 2 nm (PDI = 0.16, 20 mM SDBS, 20 mM DA),
for the SDBS micelles, 6.2 + 0.1 nm (PDI = 0.19, 20 mM SDBS), and
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Figure 1. continued

for the SPS polyelectrolyte, 13.1 + 0.2 nm (PDI = 0.24, 20 mM
repeating units). Note that the value for SPS has to be taken with
caution since it is likely that nonspherical clusters form, which would
require a more extensive DLS analysis for meaningful values of the
size.”® PDI means polydispersity index. (B, C) Cryo-TEM analysis of
the AOT vesicles (10 mM AOT) and of the SDBS/DA (1:1) vesicles
(10 mM SDBS, 10 mM DA), respectively. (D) Determination of the
cmc of SDBS with pinacyanol chloride (2.9 yM) in the pH 3.5
solution (M), yielding a value of ~0.3 mM. For comparison,
measurements were also made for SDBS dissolved in deionized
water (O), indicating that cmc (SDBS) in water is greater than 1.0
mM.>**"7° (E) Schematic representation of the likely state of the
four templates at the conditions used for the enzymatic reaction
investigated: SPS (as dynamic clusters of SPS chains),”*™”® SDBS
micelles, SDBS/DA (1:1) vesicles, and AOT vesicles.

conditions were shown to be optimal: 1.5 mM AOT, 1.0 mM
PADPA, 2.6 nM TvL, pH = 3.5 (0.1 M NaH,PO,/H,PO,, no
chloride ions), t = 24 h, and T =~ 25 °C (RT).”> For a
comparison with the other three templates, SDBS/DA (1:1)
vesicles, SDBS micelles, and SPS polyelectrolyte, we decided to

keep the phosphate solution (pH = 3.5, 0.1 M NaH,PO,/
H,PO,, chloride free), the PADPA concentration (1.0 mM),
and also the TvL concentration (2.6 nM) the same.
Furthermore, we aimed to reach reaction equilibrium after ¢
< 24 h at a reaction temperature of T &~ 25 °C (RT). We then
searched for the optimal conditions by varying the template
molecule concentrations and applying the same criteria as in
our previous work with AOT vesicles; ” see Section 1: (i) high
absorption at 4 &~ 1000 nm (A;y,) after t = 24 h with a high
A 1000/ Axsoo Tatio, both indicative of the formation of products
with a high content of linear PANI-ES repeating units (as the
band at around 500 nm is typical for the formation of
undesired substituted phenazine-type structures,””>® whereas
the band at around 1000 nm is due to ordinary PANI-ES
structures)*>>> ™% and (ii) no precipitation during and at the
end of the reaction. With this concept, the following conditions
were found to be optimal for the three “new” templates.

(a) For SDBS/DA (1:1) vesicles: [SDBS] = [DA] = 1.0
mM, with characteristic absorption maxima at 4 & 1100
and 440 nm. For [SDBS] [DA] < 0.9 mM,
precipitation occurred, and for [SDBS] = [DA] > 1.0
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Figure 2. Changes of the UV/vis/NIR spectra of the four different reaction mixtures, as measured for samples withdrawn during the reactions. The
templates used were AOT vesicles (A, [AOT] = 1.5 mM), SDBS/DA (1:1) vesicles (B, [SDBS] = [DA] = 1.0 mM), SDBS micelles (C, [SDBS] =
1.7 mM), and the SPS polyelectrolyte (D, [SPS r.u.] = 2.9 mM). [PADPA], = 1.0 mM, [TvL] = 2.6 nM, pH = 3.5 ([NaH,PO,] + [H;PO,] = 0.1

M), and T = 25 °C. For experimental details, see Section 2.
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Figure 3. Time-dependent changes of A, (A) and A (B) for the four different reaction mixtures, as determined from the recorded UV/vis/
NIR spectra shown in Figure 2. The data taken for the reaction with AOT vesicles are A, and Aoy, with SDBS/DA (1:1) vesicles are A, and
Aj19 with SDBS micelles are A,y and Agz, and with the SPS polyelectrolyte are A,y and Ay,

mM, A.jgp and Ay, were lower than for [SDBS] =
[DA] = 1.0 mM (Figure S-2A).

For SDBS micelles, we considered [SDBS] = 1.7 mM as
good conditions, with absorption bands at 4 & 930 and
410 nm. For [SDBS] < 1.1 mM, precipitation occurred,
and for [SDBS] > 1.8 mM, A0 and A, were lower
than for [SDBS] = 1.7 mM (Figure S-2B).

For SPS, there was a broad concentration range that
produced very similar UV/vis/NIR spectra after a
reaction time of t = 24 h (Figure S-2C). There was,
however, a slight increase in Agjgo/Axsoo When the
concentration of SPS r.u., [SPS r.u.], was increased from
1.4 to 3.4 mM, whereas Ag g and Ay, remained
almost constant between 1.3 and 2.9 mM, followed by a
decrease for [SPS] > 2.9 mM (Figure S-2C). Based on
this, we considered [SPS] = 2.9 mM as the optimal
concentration.

3.3. Changes of the UV/Vis/NIR Spectra of the
Reaction Mixtures Measured in Situ during the
Reactions. For each of the four template systems, the
reaction was run under the evaluated optimal reaction
conditions, and the UV/vis/NIR spectra of the reaction
mixtures were measured at predetermined times, up to t = 14
days (Figure 2). The changes in the absorption at the band
maxima in the NIR region of the spectra (A.qq; assigned to
the 7 — polaron transition)’” and at A, (assigned to the
polaron — 7* transition)®’ are compared for all four reactions
in Figure 3. From Figure 2, it is clear that in all cases the
expected bands at 4 &~ 1000 and 420 nm develop with reaction
time and that the absorption at 4 & 500 nm remains low.
Although spectral differences to some extent may be due to
differences in the size of the templates (turbidity in the case of
vesicle suspensions), see the DLS data of Figure 1A, there are
distinct differences between the groups of spectra, which must
originate from differences in the chemical structures of the
actual product mixture obtained. The two vesicle systems yield
very similar spectra and a very similar time-dependent
evolution of the spectra with 4., ~ 1070 nm (for AOT)

(b)

(c)
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and A, ~ 1100 nm (for SDBS/DA (1:1), Figure 2A,B). The
spectra shown for the reaction run in the presence of AOT
vesicles (Figure 2A) resemble closely the spectra that we
recorded previously for the same reaction (Figure 2A in ref
22). This indicates high reproducibility despite the complexity
of the reaction (see below). For the reactions with the micellar
and polyelectrolyte templates (Figure 2C,D), the spectra are
different. The absorption maxima in the NIR region of the
spectrum were located at 930 nm (for SDBS micelles) and 950
nm (for the SPS polyelectrolyte), respectively. For the micellar
system, the absorption in the NIR region clearly originates
from several absorption bands, which sum up in a very
characteristic band shape (sharp absorption increase at about
850 nm with an increase in wavelength). A very similar
spectrum was reported previously by Shumakovich et al.® for
the oxidation of PADPA in the presence of SDBS micelles at
pH = 3.8 with T. hirsuta laccase.” For this micellar system,
significant spectral changes occur well beyond ¢t = 1 day; in
other words, the reaction is much slower compared to the
reaction with the vesicles (Figure 3). In the presence of the
polyelectrolyte SPS, the reaction yields products with 4, =
950 nm and strongest intensity after £ = S h (Figure 2D). For ¢
> 5 h, Agsy decreases with a considerable broadening of the
band toward higher as well as lower wavelengths. During the
complex spectral changes above 1 &~ 500 nm, A, remained
fairly constant (Figure 3B).

In summary, the in situ UV/vis/NIR measurements indicate
that the template type has a significant influence on the
kinetics of the reaction and on the absorption spectra of the
products obtained. It seems that the template effect of the two
vesicle systems is distinctly different from the template effect of
the polyelectrolyte, and it is obvious that the reaction in the
presence of SDBS micelles is very slow. After t = 1 day and
later, the highest Ay and Ay, values are observed for the
system with AOT vesicles, indicating the highest content of the
PANI-ES-polaron form obtained with this template from
PADPA with TvL and O, (Figure 3).

3.4. Changes of the EPR Spectra of the Reaction
Mixtures Measured in Situ during the Reactions. The
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Figure 4. Changes of the EPR spectra of the four different reaction mixtures, as measured for samples withdrawn during the reactions. For the

conditions, see the legend of Figure 2.

four reactions were also analyzed by EPR spectroscopy
measurements up to a reaction time of t = 7 days (Figures 4
and S). With all templates, centers with unpaired electrons
form with time, whereby their content initially increases and
then levels off. Formation of radicals is expected if products
with PANI-ES units in the polaron state are obtained (Scheme
1). For the two vesicle systems and for the SPS polyelectrolyte,
a stable radical content is achieved after t = 1 day. In the case
of SDBS micelles, the radical content formation is much
slower, correlating with the slow increase in A, g0; see Figure
3. Although the integral of the EPR signal after reaching
saturation was about the same for the two vesicle systems and
for the SPS polyelectrolyte (Figure S), in the latter case, the
EPR signal was much broader (compare Figure 4A,B with
Figure 4D). Nevertheless, among the four template systems,
for t = 1 day and later, the radical content is highest for the
mixture with AOT vesicles (Figure 5). SDBS micelles as a
template also resulted in a broad EPR signal (Figure 4C),
which developed more slowly than with the other three.
Integrals obtained from spectra of chemically similar samples
with reproducible sample positioning in the spectrometer are a
reliable quantitative tool to compare their relative radical
content.
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EPR integral vs. reaction time
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Figure 5. Time-dependent changes of the integral of the EPR signal

for the four different reaction mixtures, as determined from the
recorded EPR spectra shown in Figure 4.

In summary, the in situ EPR measurements qualitatively and
quantitatively confirm the results of the in situ UV/vis/NIR
measurements with respect to the kinetics and yields of the
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reaction, with good correlation between EPR signal intensity
(integral) and Agg. Interestingly, the fundamental type of
radical formed at saturation of the reaction appears to be
similar for all systems (Figure 4), with a variation in Landé g-
factor of only 0.0003. However, the EPR line width differs
significantly between products obtained in the presence of SPS
or SDBS micelles compared with the two vesicle systems. The
observed differences originate most likely from the regularity of
the chemical environment in which the paramagnetic centers
are embedded. This regularity concerns the oligomer/polymer
as well as the template. We conclude that vesicles with their
fairly ordered membrane help to produce a rather uniform
oligomer/polymer and keep it aligned in the matrix they
represent. This results in a narrow distribution of electronic
states in their paramagnetic centers, causing sharper EPR
bands than in the case of products obtained with the
polyelectrolyte or micelle template. The latter apparently is
not able to impose structural regularity on the oligomers/
polymers.

3.5. Effect of Template Type on the Activity and
Stability of TvL as Measured with ABTS?". If stored at RT
in the pH 3.5 solution at [TvL] = 2.6 nM under the same
conditions used for the reaction with PADPA (50 mL flasks, 10
mL reaction volume), the activity of laccase drops within S h to
about 50% of its initial value measured immediately after
preparing the solution; after 24 h, £10% of the initial activity
could be measured (Figure 6). This indicates that the enzyme

12—
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Figure 6. Relative activity and stability of TvL dissolved at [TvL] =
2.6 nM and T ~ 25 °C in pH = 3.5 solution ([NaH,PO,] + [H;PO,]
= 0.1 M) in the presence of either AOT vesicles (®, [AOT] = 1.5
mM), SDBS/DA (1:1) vesicles (A, [SDBS] = [DA] = 1.0 mM),
SDBS micelles (¥, [SDBS] = 1.7 mM), or the SPS polyelectrolyte
(@, [SPS r.u.] = 2.9 mM). For comparison, TvL dissolved in the pH
3.5 solution without any added template was also analyzed (H). The
activity was measured with 0.25 mM ABTS>” as the substrate at pH =
3.5 (I = 1.0 cm); see Section 2. The activity is expressed as change in
Auy (AA,y,), indicative of the formation of ABTS®™, per time unit
(At) measured. Average values and standard deviations from three
separately prepared samples are plotted for each condition.

is not very stable in such dilute solution. The presence of AOT
vesicles (1.5 mM AOT) has no significant influence on the
stability of TvL. In contrast, the TvL activity was very low in
the presence of SDBS micelles (1.7 mM SDBS), even for the
measurements that were done immediately after adding TvL to
the SDBS solution (time 1 min) (Figure 6). A similar situation
was found for SDBS/DA (1:1) vesicles ([SDBS] = [DA] = 1.0
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mM), although the activity decrease was not that dramatic
(Figure 6). For the SPS polyelectrolyte, the TvL activity also
decreased significantly with storage time (Figure 6). Although
these TvL storage stability measurements may not reflect the
operational stability of TvL, i.e., the activity change in the
presence of PADPA," it at least explains qualitatively why the
TvL/O,-catalyzed oxidation and oligomerization of PADPA in
the presence of SDBS micelles are much slower compared with
the reaction with the other three templates (Figures 3 and $).
Therefore, for the following investigations we did not consider
SDBS micelles as a template anymore for the low
concentration of TvL (2.6 nM) and only compared the two
vesicle systems and the SPS polyelectrolyte. However, later on,
we reconsidered SDBS micelles using a 10 times higher TvL
concentration (26 nM); see below.

3.6. Reproducibility for the Reactions in the Presence
of AOT Vesicles, SDBS/DA (1:1) Vesicles, or SPS
Polyelectrolyte as Templates. Since the reaction mixtures
investigated are heterogeneous and consist of (i) fluid and
dynamic polymolecular assemblies (vesicles or micelles) or
dynamically clustering polyelectrolytes,”*™"® (ii) enzyme
molecules with low storage stability, (iii) O, as reoxidant of
the enzyme, and (iv) PADPA monomers that have a low water
solubility, the reproducibility of the experiments needs to be
addressed. Therefore, for each of the three conditions, we have
prepared three reaction mixtures in exactly the same way (see
Section 2), and after a reaction time of t = 24 h at T ~ 25 °C,
the reaction mixtures were analyzed by in situ UV/vis/NIR
and in situ EPR spectroscopy measurements. The results are
shown in Figure 7. Good reproducibility was observed for
AOT vesicles, in agreement with our previous results,”* and for
the SPS polyelectrolyte. In the case of SDBS/DA (1:1)
vesicles, there was considerable variation. The reason for this is
not clear. It may, however, originate from the more severe TvL
inhibition in the presence of this type of vesicles, as compared
with the AOT vesicles or SPS polyelectrolyte (Figure 6).

3.7. Raman Spectroscopy Measurements. The three
reaction mixtures containing either AOT vesicles, SDBS/DA
(1:1) vesicles, or the SPS polyelectrolyte as templates were
analyzed by in situ Raman spectroscopy measurements after
running the reactions for 24 h at RT. In the case of SPS, the
spectrum was also measured after t = S h (Figure 8) since after
5 h of reaction in the presence of SPS, the intensity of the peak
in the NIR region of the absorption spectrum was highest (see
Figure 2). The Raman spectrum recorded for the AOT vesicle
system shown in Figure 8 (top) is the same as the one shown
in Figure 5 of Kashima et al.”” The spectrum is replotted here
to allow an easier comparison among the different template
systems. The time-dependent changes in the Raman spectrum
for the reaction in the presence of AOT vesicles,”” SDBS/DA
(1:1) vesicles, and the SPS polyelectrolyte recorded during the
reaction are shown in Figures S-3—S-5, respectively.

At first glance, the spectra recorded after t = 24 h (Figure 8)
look very similar for the three templates and contain the same
main bands. However, some differences exist. The Raman
spectra of all reaction systems for t = 24 h exhibit bands that
are characteristic of polyaniline in its conductive emeraldine
salt form (PANI-ES). They are positioned at 1623—1627 cm ™
(C~C stretching vibrations of benzenoid (B) rings, ¥(C~C)s,
where “~” denotes a bond intermediate between the single and
the double bond), 1592—1597 ecm™' (C=C and C~C
stretching vibrations of quinonoid (Q) and semiquinonoid
(SQ) rings, ¥(C=C)q and v(C~C)sq), 1510—1513 cm™
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Figure 7. Reproducibility tests for the TvL/O,-catalyzed oxidation and oligomerization of PADPA in the presence of either AOT vesicles (A, B),
SDBS/DA (1:1) vesicles (C, D), or the SPS polyelectrolyte (E, F). For each condition, three reactions were run with [TvL] = 2.6 nM at 25 °C for
24 h. Shown are the recorded in situ UV/vis/NIR (A, C, E) and in situ EPR (B, D, F) spectra. For the reaction conditions, see the legend of Figure

2.

(N—H bending vibration, §(N—H)), 1351—1358 cm™' with a
shoulder at 1318—1330 cm™' (C—N"*" stretching vibrations in
polaronic SQ structures, v(C—N**)s), and 1179—1189 cm™!
(C—H bending in-plane vibrations of B rings, §(C—H)g) with
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a shoulder at ~1165 cm™' (C—H bending in-plane vibrations
of SQ rings, 6(C—H)sq) observed for systems with AOT
vesicles and SDBS/decanoic acid vesicles (Figure g). 7880
Particularly indicative of a good electrical conductivity of the
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2 h, the band at 1408 cm ™ is noticeably stronger than the band
200 | é“ﬁf SR _ at 1453 cm ™!, whereas at ¢t = 24 h, these two bands have similar

150 | °%,.508 AOT vesicles intensities.
100 1 For the in situ Raman spectra recorded during the reaction,
504 before reaction equilibrium was reached (Figures S-3—S-5),
0 g8 _ one of the important features is that the strong “phenazine
;g- 3 band” at around 1410 cm™" appears already at the early stage
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Figure 8. Analysis of reaction mixtures by in situ Raman spectroscopy
measurements for the TvL/O,-catalyzed PADPA oxidation/oligome-
rization reactions run either in the presence of AOT vesicles, SDBS/
DA (1:1) vesicles, or the SPS polyelectrolyte as templates. The
Raman spectra were recorded after t = 24 h. For SPS, a measurement
was also made after t = S h. Excitation wavelength: 633 nm. For the
reaction conditions, see the legend of Figure 2. For experimental
details, see Section 2.

obtained products is the strong “polaron band”, 1(C—N*")q,
observed in all Raman spectra, as well as the shoulder at #1165
cm™! observed only for the systems with vesicles as templates.
These features correlate well with the strong band observed in
the UV/vis/NIR spectra at 930—1100 nm (Figure 2). Besides
the mentioned bands, the spectra for the systems with SDBS/
DA (1:1) vesicles and the SPS polyelectrolyte exhibit a peak at
about 1498 cm™" (barely discernible for the system with AOT
vesicles), which can be assigned to the C=N stretching
vibration in Q rings (i.e., in quinonediimine units),
I/(CZN)Q38’8O

Raman bands that are not typical for ordinary PANI are also
seen in the spectra of the reaction products obtained in the
presence of the three different templates, recorded at t = 24 h
(Figure 8). They can be attributed to branched and phenazine-
type structural units and are seen at 1443—1454 cm™'
(attributable to ring C=C stretching vibrations, possibly in
short branches/short chains and in substituted phenazine- and
N-phenylphenazine-type structures), 1408—1417 cm™" (attrib-
uted to phenazine-type units), and 1380 cm™" (its origin is still
debatable, and it is attributable to (C—N*) vibrations in N-
phenylphenazine units and/or to v(C—N**) vibrations in
localized polaron sites).”® The appearance and positions of
these bands vary with the template type, indicating fine
differences in the molecular structure of the reaction products.
They are seen at following wavenumbers: 1443, 1417, and
1380 cm™! for AOT vesicles; 1446, 1405, and 1380 cm™' for
SDBS/DA (1:1) vesicles; and at 1452 and 1410 cm™ for the
SPS polyelectrolyte.

The Raman spectra of the products formed in the presence
of SPS as template recorded at t = 5 and 24 h are mutually very
similar. One observed difference, however, refers to the
intensity ratio of the bands that are atypical for PANI-ES, at
about 1408 and 1453 cm™": in the spectrum recorded at t = S
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of the reaction (at ¢ = 1 min) and the relative intensity of this
band decreases with the reaction time for all three template
systems. Another important observation refers to the evolution
of polaron band due to the v(C—N*")sq, vibration (at around
1350 cm™!, with a shoulder at ~1320 cm™!) with reaction
time. The dynamics of the evolution of this band is different
for each template system. For example, the first spectrum at ¢ =
1 min exhibits the 2(C—N**)sq band at around 1350 cm™! as
rather strong one in the case of AOT vesicles (Figure $-3),%
whereas in the cases of SDBS/DA (1:1) vesicles (Figure S-4)
and the SPS polyelectrolyte (Figure S-5), this band is weak at ¢
= 1 min. For all three templates, the relative intensity of the
v(C—=N*")sq band increases with reaction time and it becomes
strong at t = 24 h, indicating an increase in the relative amount
of polaron units, i.e,, the increase in the content of conductive
PANI-ES-like structural units.

3.8. HPLC Analysis. The three reaction mixtures
containing either AOT vesicles, SDBS/DA (1:1) vesicles, or
the SPS polyelectrolyte were also anal;rzed with an HPLC
method, which we developed previously. Y22 In brief, with this
analysis, it is possible to get information about the extent of
monomer conversion (consumption of PADPA) and about the
type of oligomeric products formed in the reaction mixture.
Since the HPLC analysis is based on the chromatographic
separation of extracted reaction products that are first
deprotonated for making them extractable and then chemically
reduced, no information about the oxidation and protonation
states of the as-formed products can be obtained. Nevertheless,
the HPLC analysis turned out to be very useful for analyzing
the enzymatic oxidation and oligomerization of PADPA, as a
complementary method to the in situ UV/vis/NIR, EPR, and
Raman spectroscopy measurements.”' ~>*

The chromatograms shown in Figure 9 were obtained from
an HPLC analysis in which a diode array detector was used.
For the AOT vesicle system (Figure 9A), the data shown are
the same as in our previous work; see Figure 6A in Kashima et
al.”* The analysis was made after a reaction time of t = 24 h.
The peak pattern shown was reproducibly obtained by
analyzing independently prepared reaction mixtures of the
same composition.”” For the SDBS/DA (1:1) vesicles (Figure
9B), the chromatogram for t = 24 is very similar to the
chromatogram for the AOT vesicle system. For the SPS
polyelectrolyte, a complete extraction of the reaction products
into tert-butyl methyl ether (MTBE) after a runtime of t = 24 h
was not possible (most likely due to a strong binding of SPS to
the products or due to the formation of insoluble products). In
contrast, complete product extraction was observed after t = S
h, the reaction time at which the band intensity at 4 & 1000
nm in the in situ UV/vis/NIR absorption spectrum was
highest (Figure 2D). The HPLC analysis of the products
obtained after t = S h in the presence of the SPS polyelectrolyte
showed that there is a great similarity in terms of peak pattern
when compared to that of the two vesicle systems (Figure
9A,B), the only difference being the relative intensities of the
peaks. For an HPLC analysis of the progress of the reactions
for all three templates, see Figure S-6. For a detailed
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Figure 9. Chromatograms of the extracted and reduced products of the oxidation of PADPA with TvL/O, in the presence of either AOT vesicles
([AOT] = 1.5 mM) (A); SDBS/DA (1:1) vesicles ([SDBS] = [DA] = 1.0 mM) (B); or the SPS polyelectrolyte ([SPS r.u.] = 2.9 mM) (C). For all
reaction mixtures, [TvL] = 2.6 nM; [PADPA] = 1.0 mM; pH = 3.5 ([NaH,PO,] + [H;PO,] = 0.1 M), and T = 25 °C. Analysis was performed
after t = 24 h (for (A) and (B)) or t = S h (C). All products presented here were extracted into MTBE.

Table 1. Assignment of the Main Peaks in the HPLC Chromatograms Shown in Figure 9; See Kashima et al. (2018)* for

Details

retention time, rt (min)
19.49; 19.50; 19.53
27.44; 27.46; 27.49
32.71; 32.73; 32.75
39.52; 39.55; 39.55
~56

assignment

PADPA
(PADPA), 5 (partially oxidized)

linear (PADPA),
(PADPA), with phenazine units

linear (PADPA), (in part not fully reduced)

molecular formula (for chemical structure, see Scheme S-2)
C12H13NZ+
CisHiN3"
C:24H23N4+ (CZ4H21N4+)
Cs6HaNg"
C,sHy Ng* for example

assignment of the different peaks based on an HPLC—-MS
analysis with partially deuterated PADPA monomers, see
Kashima et al,,”* and Table 1.

Overall, the HPLC analysis of the deprotonated and reduced
reaction products shows that the two vesicle systems gave very
similar results after £ = 24 h (Figure 9A,B) and that in the case
of SPS the product distribution in the reaction is also very
similar when analyzed after ¢t = S h (Figure 9C). The main
product is the linear aniline tetramer, (PADPA), (eluting after
rt ~ 32.7 min). Furthermore, linear hexaaniline is formed,
(PADPA); (eluting after rt ~ 39.5 min), as well as higher
oligomers with phenazine units (eluting at rt & 56 min). The
amount of remaining PADPA monomer, which elutes at rt ~
19.5 min,”* was very low. In the case of SPS, the difficulty of

2942

completely extracting the products formed after a reaction time
of t = 24 h seems to be linked to the observation made with the
in situ Raman spectroscopy measurements; see Section 3.7
(Figure S-S). Spectral changes occur between t = 5 and 24 h in
Raman bands, which are atypical for PANI-ES and therefore
undesired (possible transformation of short branches into
phenazine structures).

3.9. Test of the Inkjet-Printability of the PANI-ES
Suspensions Obtained with AOT Vesicles, SDBS/DA
(1:1) Vesicles, or SPS Polyelectrolyte. All three reaction
mixtures were tested for their inkjet-printability on ordinary
white paper by applying a previously developed protocol."”
The original black ink of a commercial thermal inkjet cartridge,
after modification to accommodate lower-surface-tension inks,
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Figure 10. Photographs of inkjet-printed patterns using three different reaction mixtures obtained from the enzymatic oligomerization of PADPA
in the presence of either AOT vesicles, SDBS/DA (1:1) vesicles, or the SPS polyelectrolyte as templates with TvL/O, after a reaction time of t = 24
h. For the composition, see the legend of Figure 9. Pictures on the left side are large size characters with 75 mm total width. Pictures on the right

side are small patterns with 15 mm width.

was replaced by a PANI-ES template suspension or solution.
As a result, all three reaction mixtures could be used as ink
without any further pretreatment (Figure 10). Consistent and
continual printing over many pages was possible, indicating
small and well-dispersed particles present in the reaction
mixtures in all cases. Neither clogging of the inkjet printer
nozzles nor thermal decomposition of the inks was observed.
This is important for possible applications of the as-obtained
PANI-ES template dispersion or solutions.

3.10. Reconsidering SDBS Micelles by Using a
Significantly Higher TvL Concentration. In the final part
of this work, we reconsidered the use of SDBS micelles as
templates and tried to apply a higher TvL concentration for
achieving complete PADPA conversion. All chosen conditions
were the same: [SDBS] = 1.7 mM, [PADPA] = 1.0 mM, pH =
3.5 solution, and T =~ 25 °C. The concentration of TvL was
varied between 2.6 and 26 nM. The UV/vis/NIR spectra
recorded after a reaction time of t = 24 h are shown in Figure
11. For [TvL] = 2.6 nM, the spectrum is about the same as the
one shown in Figure 2D for t = 1 day, with 4,,,, & 930 and 440
nm. For [TvL] 26 nM, both band intensities were
considerably higher. For the reaction mixture at these “new

1.2
| —26nM
) —5.1nM
~ ‘ =410 nm 13 M
g ‘ 26 M
1S I
3 084 ||| =930 nm
=}
1} |
= |
g |V
C
8 041
5]
[%2]
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<
0.0 T T T T T T T
200 400 600 800 1000 1200 1400

Wavelength (nm)

Figure 11. Effect of TvL concentration on the in situ UV/vis/NIR
spectrum of the reaction products obtained from the enzymatic
oligomerization of PADPA in the presence of SDBS micelles as
templates. The reaction was carried out at [SDBS] 1.7 mM,
[PADPA] = 1.0 mM, pH = 3.5 ([NaH,PO4] + [H;P04] = 0.1 M),
and T = 25 °C; and [TvL] varying between 2.6 and 26 nM. For all
TvL concentrations, characteristic peaks appeared at 4 &~ 930 and 410
nm. For experimental details, see Section 2.
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SDBS micelle conditions” with 26 nM TvL, we carried out the
same analysis as for the other three reaction mixtures and ~2.6
nM TvL—AOT vesicles, SDBS/DA (1:1) vesicles, and SPS
polyelectrolyte; see Figure 12. The results obtained can be
summarized as follows. Although after a reaction time of ¢t = 24
h high absorbance at 4 & 930 nm is reached, the UV/vis/NIR
spectrum continues to change with time up to at least t = 14
days with an increase in absorbance between 1100 and 1400
nm and a slight decrease in Ay, (Figure 12A). The EPR
signal is always broad, and its intensity increases with reaction
time, even beyond ¢ = 1 day (Figure 12B). The reproducibility
of the measurements is high (Figure 12C,D). The Raman
spectrum recorded after ¢t = 24 h (Figure 12E) is very similar to
the Raman spectra of the reaction mixtures in the presence of
vesicles and polyelectrolyte templates at [TvL] = 2.6 nM. As
discussed in Section 3.7, bands are also present at 1454 and
1394 cm™!, which are atypical for PANI-ES and indicate the
formation of structure units containing substituted phenazines
and branches. For SDBS micelles as templates, the relative
intensity of the band at 1394 cm™ at ¢ = 24 h is much higher
(Figure S-7) compared to that of the spectra of the products
obtained with the other three templates at t = 24 h, at the same
TvL concentration (Figures S-3—S-5). The time-dependent
changes in the Raman spectrum are shown in Figure S-7.
Similar to the case of AOT vesicles, the polaron band due to
the v(C—N*")gq vibration at 1350 cm™" is rather strong
already after t = 1 min. The HPLC data (Figures 12F and S-8)
are very similar to the ones shown for the other templates and
2.6 nM TvL conditions. Finally, the inkjet-printability of the
SDBS reaction mixture obtained with 26 nM TvL after T = 24
h has been confirmed (Figure 12G). Overall, it can be
concluded that a much higher TvL concentration is needed for
the system with SDBS micelles to achieve high monomer
conversion and similar characteristics of PADPA oligomeric
products within 24 h compared to that needed for the systems
with the other three templates (2.6 nM).

4. CONCLUSIONS

In a follow-up work of our previous investigations of the TvL/
O,-catalyzed oxidation and oligomerization of PADPA in the
presence of AOT vesicles as templates for obtaining
conductive PANI-ES-type products,'”>* we have made a
comparison of the same reaction but with SDBS/DA (1:1)
vesicles, SDBS micelles, or the SPS polyelectrolyte as
templates. For the optimized conditions used, the products
obtained with the two vesicle templates have more in common
than the products of the reactions in the presence of SPS
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Figure 12. Reconsidering the SDBS micelles using 26 nM instead of 2.6 nM TvL. The reaction was carried out at [SDBS] = 1.7 mM, [PADPA] =
1.0 mM, pH = 3.5 ([NaH,PO4] + [H3;P04] = 0.1 M), [TvL] ~ 26 nM, and T =~ 25 °C. For experimental details, see Section 2. (A) Time-
dependent changes in the in situ UV/vis/NIR absorption spectrum; (B) time-dependent changes in the in situ EPR spectrum; (C, D)
reproducibility test for three separately prepared reaction mixtures with identical composition and a reaction time of t = 24 h; (E) in situ Raman
spectrum of the reaction mixture for ¢ = 24 h; (F) HPLC analysis of the reaction mixture after t = 24 h; (G) test of inkjet-printability.

polyelectrolyte or SDBS micelles. In the case of the micelles,
the reaction is much slower than with the other templates. In
the presence of SPS polyelectrolyte, the oxidation and
oligomerization of PADPA are initially rapid, but the UV/
vis/NIR spectrum then becomes unstable and exhibits a broad
peak and a decrease of absorbance at around 1000 nm. We
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conclude that vesicle template systems, like SDBS/DA (1:1)
and AOT, are superior in producing PANI-ES-type materials
with the desired stable properties. Especially, AOT vesicles
foster formation of desired PANI-ES-type products with

excellent reproducibility.
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Products obtained with SDBS micelles and the SPS
polyelectrolyte show extremely broad EPR signals, indicating
poor uniformity of radical centers. Complementary in situ
Raman spectroscopy measurements are in good agreement
with the UV/vis/NIR and EPR measurements. PANI-ES-type
products in stable suspensions can be obtained as dominant
products with all four investigated templates under carefully
specified reaction conditions. Furthermore, all suspensions are
inkjet-printable. However, the choice of the template,
especially regarding its shape and size, affects kinetics and
product quality. SDBS micelles are least attractive, whereas the
SPS polyelectrolyte can compete with vesicles in kinetics but
not with product properties. If a high content of the
conducting, ordinary PANI-ES polaron form in the products
is to be achieved, AOT vesicles are the templates of choice.
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