30 research outputs found

    Single Nucleotide Polymorphism (SNP)-Based Loss of Heterozygosity (LOH) Testing by Real Time PCR in Patients Suspect of Myeloproliferative Disease

    Get PDF
    During tumor development, loss of heterozygosity (LOH) often occurs. When LOH is preceded by an oncogene activating mutation, the mutant allele may be further potentiated if the wild-type allele is lost or inactivated. In myeloproliferative neoplasms (MPN) somatic acquisition of JAK2V617F may be followed by LOH resulting in loss of the wild type allele. The occurrence of LOH in MPN and other proliferative diseases may lead to a further potentiating the mutant allele and thereby increasing morbidity. A real time PCR based SNP profiling assay was developed and validated for LOH detection of the JAK2 region (JAK2LOH). Blood of a cohort of 12 JAK2V617F-positive patients (n = 6 25–50% and n = 6>50% JAK2V617F) and a cohort of 81 patients suspected of MPN was stored with EDTA and subsequently used for validation. To generate germ-line profiles, non-neoplastic formalin-fixed paraffin-embedded tissue from each patient was analyzed. Results of the SNP assay were compared to those of an established Short Tandem Repeat (STR) assay. Both assays revealed JAK2LOH in 1/6 patients with 25–50% JAK2V617F. In patients with >50% JAK2V617F, JAK2LOH was detected in 6/6 by the SNP assay and 5/6 patients by the STR assay. Of the 81 patients suspected of MPN, 18 patients carried JAK2V617F. Both the SNP and STR assay demonstrated the occurrence of JAK2LOH in 5 of them. In the 63 JAK2V617F-negative patients, no JAK2LOH was observed by SNP and STR analyses. The presented SNP assay reliably detects JAK2LOH and is a fast and easy to perform alternative for STR analyses. We therefore anticipate the SNP approach as a proof of principle for the development of LOH SNP-assays for other clinically relevant LOH loci

    The gene-reduction effect of chromosomal losses detected in gastric cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The level of loss of heterozygosity (LOH) that reduces a gene dose and exerts a cell-adverse effect is known to be a parameter for the genetic staging of gastric cancers. This study investigated if the cell-adverse effect induced with the gene reduction was a rate-limiting factor for the LOH events in two distinct histologic types of gastric cancers, the diffuse- and intestinal-types.</p> <p>Methods</p> <p>The pathologic specimens obtained from 145 gastric cancer patients were examined for the level of LOH using 40 microsatellite markers on eight cancer-associated chromosomes (3p, 4p, 5q, 8p, 9p, 13q, 17p and 18q).</p> <p>Results</p> <p>Most of the cancer-associated chromosomes were found to belong to the gene-poor chromosomes and to contain a few stomach-specific genes that were highly expressed. A baseline-level LOH involving one or no chromosome was frequent in diffuse-type gastric cancers. The chromosome 17 containing a relatively high density of genes was commonly lost in intestinal-type cancers but not in diffuse-type cancers. A high-level LOH involving four or more chromosomes tended to be frequent in the gastric cancers with intestinal and mixed differentiation. Disease relapse was common for gastric cancers with high-level LOH through both the hematogenous (38%) and non-hematogenous (36%) routes, and for the baseline-level LOH cases through the non-hematogenous route (67%).</p> <p>Conclusions</p> <p>The cell-adverse effect of gene reduction is more tolerated in intestinal-type gastric cancers than in diffuse-type cancers, and the loss of high-dose genes is associated with hematogenous metastasis.</p

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    The Pathologist’s Guide to Fixatives

    No full text
    Proper tissue fixation is essential to ensure the highest level of specimen evaluation. Pathologists and laboratory staff are frequently consulted by clinical counterparts regarding what fixative should be used for different tissues or to enable a diagnosis of a specific condition. It is vital for the patient that the pathologist provides accurate information to ensure proper fixation. Frequently, once a tissue has been fixed inadequately or inappropriately, remedial changes may no longer be possible. Most often formalin is an adequate choice, if not the optimal one; however, there are certain situations when placing the tissue in formalin may limit the ability to reach a definitive diagnosis. It is imperative for pathologists to have the knowledge to communicate which fixative is optimal. Furthermore, as we move into a world of personalized medicine, where ancillary testing has both diagnostic and specific therapeutic implications, knowledge about how different fixatives affect immunohistochemistry, cytogenetics, and molecular studies becomes even more significant. This chapter provides practical information regarding common fixatives, their mechanism of action and optimal uses
    corecore