4,061 research outputs found

    Exploring Lifetime Effects in Femtoscopy

    Full text link
    We investigate the role of lifetime effects from resonances and emission duration tails in femtoscopy at RHIC in two Blast-Wave models. We find the non-Gaussian components compare well with published source imaged data, but the value of R_out obtained from Gaussian fits is not insensitive to the non-Gaussian contributions when realistic acceptance cuts are applied to models.Comment: 5 pages, 2 figure

    Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

    Get PDF
    Single- and multilayer graphene and highly ordered pyrolytic graphite (HOPG) were exposed to a pure hydrogen low-temperature plasma (LTP). Characterizations include various experimental techniques such as photoelectron spectroscopy, Raman spectroscopy and scanning probe microscopy. Our photoemission measurement shows that hydrogen LTP exposed HOPG has a diamond-like valence-band structure, which suggests double-sided hydrogenation. With the scanning tunneling microscopy technique, various atomic-scale charge-density patterns were observed, which may be associated with different C-H conformers. Hydrogen-LTP-exposed graphene on SiO₂ has a Raman spectrum in which the D peak to G peak ratio is over 4, associated with hydrogenation on both sides. A very low defect density was observed in the scanning probe microscopy measurements, which enables a reverse transformation to graphene. Hydrogen-LTP-exposed HOPG possesses a high thermal stability, and therefore, this transformation requires annealing at over 1000 °C

    Highly-anisotropic and strongly-dissipative hydrodynamics with transverse expansion

    Full text link
    A recently formulated framework of highly-anisotropic and strongly-dissipative hydrodynamics (ADHYDRO) is used to describe the evolution of matter created in ultra-relativistic heavy-ion collisions. New developments of the model contain: the inclusion of asymmetric transverse expansion (combined with the longitudinal boost-invariant flow) and comparisons of the model results with the RHIC data, which have become possible after coupling of ADHYDRO with THERMINATOR. Various soft-hadronic observables (the transverse-momentum spectra, the elliptic flow coefficient v_2, and the HBT radii) are calculated for different initial conditions characterized by the value of the initial pressure asymmetry. We find that as long as the initial energy density profile is unchanged the calculated observables remain practically the same. This result indicates the insensitivity of the analyzed observables to the initial anisotropy of pressure and suggests that the complete thermalization of the system may be delayed to easily acceptable times of about 1 fm/c

    EXAFS studies of prostate cancer cell lines

    Get PDF
    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented

    Early dynamics of transversally thermalized matter

    Full text link
    We argue that the idea that the parton system created in relativistic heavy-ion collisions is formed in a state with transverse momenta close to thermodynamic equilibrium and its subsequent dynamics at early times is dominated by pure transverse hydrodynamics of the perfect fluid is compatible with the data collected at RHIC. This scenario of early parton dynamics may help to solve the problem of early equilibration.Comment: 4 pages, 2 figures, Talk given by M. Chojnacki at Quark Matter 2008, Jaipur, Indi

    Solution of the RHIC HBT puzzle with Gaussian initial conditions

    Full text link
    It is argued that the consistent description of the transverse-momentum spectra, elliptic flow, and the HBT radii in the relativistic heavy-ion collisions studied at RHIC may be obtained within the hydrodynamic model if one uses the Gaussian profile for the initial energy density in the transverse plane. Moreover, we show that the results obtained in the scenario with an early start of hydrodynamics (at the proper time tau0 = 0.25 fm) are practically equivalent to the results obtained in the model where the hydrodynamics is preceded by the free-streaming stage of partons (in the proper time interval 0.25 fm < tau < 1 fm) which suddenly equilibrate and with the help of the Landau matching conditions are transformed into the hydrodynamic regime (at the proper time tau0 = 1 fm).Comment: talk presented by WF at SQM2008 Conferenc

    Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL

    Get PDF
    New laboratory data of CH2_2CHCN (vinyl cyanide) in its ground and vibrationally excited states at the microwave to THz domain allow searching for these excited state transitions in the Orion-KL line survey. Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz spectrum provided measurements of CH2_2CHCN covering a spectral range of 18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the 18-40 GHz region and by ab-initio anharmonic force field calculations. For analyzing the emission lines of CH2_2CHCN species detected in Orion-KL we used the excitation and radiative transfer code (MADEX) at LTE conditions. The rotational transitions of the ground state of this molecule emerge from four cloud components of hot core nature which trace the physical and chemical conditions of high mass star forming regions in the Orion-KL Nebula. The total column density of CH2_2CHCN in the ground state is (3.0±\pm0.9)x1015^{15} cm2^{-2}. We report on the first interstellar detection of transitions in the v10=1/(v11=1,v15=1) dyad in space, and in the v11=2 and v11=3 states in Orion-KL. The lowest energy vibrationally excited states of vinyl cyanide such as v11=1 (at 328.5 K), v15=1 (at 478.6 K), v11=2 (at 657.8 K), the v10=1/(v11=1,v15=1) dyad (at 806.4/809.9 K), and v11=3 (at 987.9 K) are populated under warm and dense conditions, so they probe the hottest parts of the Orion-KL source. Column density and rotational and vibrational temperatures for CH2_2CHCN in their ground and excited states, as well as for the isotopologues, have been constrained by means of a sample of more than 1000 lines in this survey. Moreover, we present the detection of methyl isocyanide (CH3_3NC) for the first time in Orion-KL and a tentative detection of vinyl isocyanide (CH2_2CHNC) and give column density ratios between the cyanide and isocyanide isomers.Comment: 46 pages, 22 figures, 14 tables, 9 online table

    Altering the properties of graphene on Cu(111) by intercalation of potassium bromide

    Get PDF
    The catalytic growth on transition metal surfaces provides a clean and controllable route to obtain defect-free, monocrystalline graphene. However, graphene's optical and electronic properties are diminished by the interaction with the metal substrate. One way to overcome this obstacle is the intercalation of atoms and molecules decoupling the graphene and restoring its electronic structure. We applied noncontact atomic force microscopy to study the structural and electric properties of graphene on clean Cu(111) and after the adsorption of KBr or NaCl. By means of Kelvin probe force microscopy, a change in graphene's work function has been observed after the deposition of KBr, indicating a changed graphene-substrate interaction. Further measurements of single-electron charging events as well as X-ray photoelectron spectroscopy confirmed an electronic decoupling of the graphene islands by KBr intercalation. The results have been compared with density functional theory calculations, supporting our experimental findings
    corecore