40 research outputs found

    Gut microbial metabolites of linoleic acid are metabolized by accelerated peroxisomal β-oxidation in mammalian cells

    Get PDF
    Microorganisms in animal gut produce unusual fatty acids from the ingested diet. Two types of hydroxy fatty acids (HFAs), 10-hydroxy-cis-12-octadecenoic acid (HYA) and 10-hydroxy-octadecanoic acid (HYB), are linoleic acid (LA) metabolites produced by Lactobacillus plantarum. In this study, we investigated the metabolism of these HFAs in mammalian cells. When Chinese hamster ovary (CHO) cells were cultured with HYA, approximately 50% of the supplemented HYA disappeared from the dish within 24 hours. On the other hand, the amount of HYA that disappeared from the dish of peroxisome (PEX)-deficient CHO cells was lower than 20%. Significant amounts of C2- and C4-chain-shortened metabolites of HYA were detected in culture medium of HYA-supplemented CHO cells, but not in medium of PEX-deficient cells. These results suggested that peroxisomal β-oxidation is involved in the disappearance of HYA. The PEX-dependent disappearance was observed in the experiment with HYB, but not with LA. We also found that HYA treatment up-regulates peroxisomal β-oxidation activity of human gastric MKN74 cells and intestinal Caco-2 cells. These results indicate a possibility that HFAs produced from gut bacteria affect lipid metabolism of host via modulation of peroxisomal β-oxidation activity

    A 1.5-Mb PAC/BAC Contig Spanning the Prader-Willi Syndrome Critical Region (PWCR)

    Get PDF
    Prader-Willi syndrome (PWS) is a multiple anomalies/mental retardation syndrome. The putative PWS gene(s) remains unknown, and its occurrence is based on genomic imprinting at chromosome 15q11-q13. We have constructed a 1.5- Mb, fine, physical map of PWS critical region (PWCR) between two markers, D15S9 and D15S174 at 15q11-q13. The map is composed of 32 PAC and 3 BAC clones without any gaps. By the PAC/BAC-end sequencing procedure, a total of 26 sequence tag site (STS) markers were newly generated, and 5 expressed sequence tags (ESTs) were mapped in the region. The contig map was verified by both STS and fluorescence in situ hybridization analyses. Our map has higher resolution, compared with a previous YAC-based map of PWCR. It is useful for further genome analysis, especially on genomic imprinting of this region

    A unique missense variant in the E1A-binding protein P400 gene is implicated in schizophrenia by whole-exome sequencing and mutant mouse models

    Get PDF
    Genetic and epidemiological evidence has suggested that genetic factors are important in schizophrenia, although its pathophysiology is poorly understood. This study used whole-exome sequencing to investigate potential novel schizophrenia-causing genes in a Japanese family containing several members affected by severe or treatment-resistant schizophrenia. A missense variant, chr12:132064747C>T (rs200626129, P2805L), in the E1A-binding protein P400 (EP400) gene completely segregated with schizophrenia in this family. Furthermore, numerous other EP400 mutations were identified in the targeted sequencing of a schizophrenia patient cohort. We also created two lines of Ep400 gene-edited mice, which had anxiety-like behaviours and reduced axon diameters. Our findings suggest that rs200626129 in EP400 is likely to cause schizophrenia in this Japanese family, and may lead to a better understanding and treatment of schizophrenia

    Nonsense mutation in CFAP43 causes normal-pressure hydrocephalus with ciliary abnormalities

    Get PDF
    OBJECTIVE: To identify genes related to normal-pressure hydrocephalus (NPH) in one Japanese family with several members with NPH. METHODS:We performed whole-exome sequencing (WES) on a Japanese family with multiple individuals with NPH and identified a candidate gene.Then we generated knockout mouse using CRISPR/Cas9 to confirm the effect of the candidate gene on the pathogenesis of hydrocephalus.RESULTS: In WES, we identified a loss-of-function variant in CFAP43 that segregated with the disease. CFAP43 encoding cilia- and flagella-associated protein is preferentially expressed in the testis.Recent studies have revealed that mutations in this gene cause male infertility owing to morphologic abnormalities of sperm flagella. We knocked out mouse ortholog Cfap43 using CRISPR/Cas9 technology, resulting in Cfap43-deficient mice that exhibited a hydrocephalus phenotype with morphologic abnormality of motile cilia. CONCLUSION: Our results strongly suggest that CFAP43 is responsible for morphologic or movement abnormalities of cilia in the brain that result in NPH

    A type of familial cleft of the soft palate maps to 2p24.2–p24.1 or 2p21–p12

    Get PDF
    Cleft of the soft palate (CSP) and the hard palate are subtypes of cleft palate. Patients with either condition often have difficulty with speech and swallowing. Nonsyndromic, cleft palate isolated has been reported to be associated with several genes, but to our knowledge, there have been no detailed genetic investigations of CSP. We performed a genome-wide linkage analysis using a single-nucleotide polymorphism-based microarray platform and successively using microsatellite markers in a family in which six members, across three successive generations, had CSP. A maximum LOD score of 2.408 was obtained at 2p24.2-24.1 and 2p21-p12, assuming autosomal dominant inheritance. Our results suggest that either of these regions is responsible for this type of CSP

    A Genome-wide Linkage Analysis and Mutation Analysis of Hereditary Congenital Blepharoptosis in a Japanese Family

    Get PDF
    Hereditary congenital ptosis (PTOS) is defined as drooping of the upper eyelid without any other accompanying symptoms and distinguished from syndromic blepharoptosis.Two previous linkage analyses assigned a PTOS locus (PTOS1) to 1p32-p34.1 and another (PTOS2) to Xq24-q27.1. In addition, in a sporadic case with a balanced chromosomal translocation t(1;8)(p34.3;q21.12), the ZFHX4 (zinc finger homeodomain 4) gene was found to be disrupted at the 8q21.12 breakpoint, but there was no gene at the 1p34.3 breakpoint, suggesting the existence of the third PTOS locus (PTOS1) at 8q21.12. We carried out a genome-wide linkage analysis in a Japanese PTOS family and calculated two-point and multipoint LOD scores with reduced penetrance. Haplotype analysis gave three candidate disease-responsible regions, i.e., 8q21.11-q22.1, 12q24.32-q24.33 and 14q21.1-q23.2. Although the family size is too small to define one of them, 8q21.11-q22.1 is a likely candidate region, because it contains the previously reported translocation breakpoint above. We thus performed mutation, Southern-blot and methylation analyses of ZFHX4, but could not find any disease specific change in the family. Nevertheless, our data may support the localization of PTOS1.長崎大学学位論文 学位記番号:博(医歯薬)甲第153号 博士(医学)学位授与年月日:平成20年3月19

    Molecular karyotyping in 17 patients and mutation screening in 41 patients with Kabuki syndrome.

    Get PDF
    The Kabuki syndrome (KS, OMIM 147920), also known as the Niikawa-Kuroki syndrome, is a multiple congenital anomaly/mental retardation syndrome characterized by a distinct facial appearance. The cause of KS has been unidentified, even by whole-genome scan with array comparative genomic hybridization (CGH). In recent years, high-resolution oligonucleotide array technologies have enabled us to detect fine copy number alterations. In 17 patients with KS, molecular karyotyping was carried out with GeneChip 250K NspI array (Affymetrix) and Copy Number Analyser for GeneChip (CNAG). It showed seven copy number alterations, three deleted regions and four duplicated regions among the patients, with the exception of registered copy number variants (CNVs). Among the seven loci, only the region of 9q21.11-q21.12 ( approximately 1.27 Mb) involved coding genes, namely, transient receptor potential cation channel, subfamily M, member 3 (TRPM3), Kruppel-like factor 9 (KLF9), structural maintenance of chromosomes protein 5 (SMC5) and MAM domain containing 2 (MAMDC2). Mutation screening for the genes detected 10 base substitutions consisting of seven single-nucleotide polymorphisms (SNPs) and three silent mutations in 41 patients with KS. Our study could not show the causative genes for KS, but the locus of 9q21.11-q21.12, in association with a cleft palate, may contribute to the manifestation of KS in the patient. As various platforms on oligonucleotide arrays have been developed, higher resolution platforms will need to be applied to search tiny genomic rearrangements in patients with KS.Journal of Human Genetics (2009) 54, 304-309; doi:10.1038/jhg.2009.30; published online 03 April 2009

    Archaeal β diversity patterns under the seafloor along geochemical gradients

    Get PDF
    Recently, deep drilling into the seafloor has revealed that there are vast sedimentary ecosystems of diverse microorganisms, particularly archaea, in subsurface areas. We investigated the β diversity patterns of archaeal communities in sediment layers under the seafloor and their determinants. This study was accomplished by analyzing large environmental samples of 16S ribosomal RNA gene sequences and various geochemical data collected from a sediment core of 365.3 m, obtained by drilling into the seafloor off the east coast of the Shimokita Peninsula. To extract the maximum amount of information from these environmental samples, we first developed a method for measuring β diversity using sequence data by applying probability theory on a set of strings developed by two of the authors in a previous publication. We introduced an index of β diversity between sequence populations from which the sequence data were sampled. We then constructed an estimator of the β diversity index based on the sequence data and demonstrated that it converges to the β diversity index between sequence populations with probability of 1 as the number of sampled sequences increases. Next, we applied this new method to quantify β diversities between archaeal sequence populations under the seafloor and constructed a quantitative model of the estimated β diversity patterns. Nearly 90% of the variation in the archaeal β diversity was explained by a model that included as variables the differences in the abundances of chlorine, iodine, and carbon between the sediment layers

    Imprinting analysis by droplet digital PCR coupled with locked nucleic acid TaqMan probes

    No full text
    Imprinted genes are differentially expressed in a parent-of-origin-specific manner. Parental origin of the alleles is discriminated by intragenic DNA polymorphisms. Comparisons of parental allelic expression have been analysed by semiquantitative RT-PCR. Here, we developed a novel quantitative method for allelic expression of the imprinted gene Ube3a, which inactivation and mutations cause Angelman syndrome and predominantly expressed by the maternal allele in neuronal tissues. In this method, cDNA was amplified by droplet digital PCR (ddPCR) coupled with allele-specific locked nucleic acid (LNA) TaqMan probes, which labelled by FAM and HEX were designed to detect the SNPs in the target regions. ddPCR assay demonstrated that the sense transcript of Ube3a was equally expressed from both parental alleles in adult tissues except neuronal tissues, where Ube3a expression from the paternal allele was about 10 to 14% of total Ube3a expression in adult brain, and 20% in spinal cord. The antisense transcript of Ube3a was expressed at 60% to 70% of the sense transcript of Ube3a in adult brain. Changes in the Ube3a transcripts during postnatal brain development were also evaluated by ddPCR. The ddPCR method is far more reliable and simpler to use than semiquantitative PCR to analyse skewed or faint allelic expression of imprinted genes

    Disruption of the LTD dialogue between the cerebellum and the cortex in Angelman syndrome model: a timing hypothesis.

    Get PDF
    Angelman syndrome (AS) is a genetic neurodevelopmental disorder in which cerebellar functioning impairment has been documented despite the absence of gross structural abnormalities. Characteristically, a spontaneous 160 Hz oscillation emerges in the Purkinje cells network of the Ube3a (m-/p+) Angelman mouse model. This abnormal oscillation is induced by enhanced Purkinje cell rhythmicity and hypersynchrony along the parallel fiber beam. We present a pathophysiological hypothesis for the neurophysiology underlying major aspects of the clinical phenotype of AS, including cognitive, language and motor deficits, involving long-range connection between the cerebellar and the cortical networks. This hypothesis states that the alteration of the cerebellar rhythmic activity impinges cerebellar long-term depression (LTD) plasticity, which in turn alters the LTD plasticity in the cerebral cortex. This hypothesis was based on preliminary experiments using electrical stimulation of the whiskers pad performed in alert mice showing that after a 8 Hz LTD-inducing protocol, the cerebellar LTD accompanied by a delayed response in the wild type (WT) mice is missing in Ube3a (m-/p+) mice and that the LTD induced in the barrel cortex following the same peripheral stimulation in wild mice is reversed into a LTP in the Ube3a (m-/p+) mice. The control exerted by the cerebellum on the excitation vs. inhibition balance in the cerebral cortex and possible role played by the timing plasticity of the Purkinje cell LTD on the spike-timing dependent plasticity (STDP) of the pyramidal neurons are discussed in the context of the present hypothesis.info:eu-repo/semantics/publishe
    corecore