1,344 research outputs found

    Population migration: A meta-heuristics for stochastic approaches to constraint satisfaction problems

    Get PDF
    A meta-heuristics for escaping from local optima to solve constraint satisfaction problems is proposed, which enables self-adaptive dynamic control of the temperature to adjust the locality of stochastic search. In our method, several groups with different temperatures are prepared. To each group the same number of candidate solutions are initially allotted. Then, the main process is repeated until the procedure comes to a certain convergence. The main process is composed of two phases: stochastic searching and population tuning. As for the latter phase, after evaluating the adaptation value of every group, migration of some number of candidate solutions in groups with lower values to groups with higher values are induced. Population migration is a kind ofparallel version of simulated annealing, where several temperatures are spatially distributed. Some experiments are performed to verify the efficiency of the method applied to constraint satisfaction problems. It is also demonstrated that population migration is exceptionally effective in the critical region where phase transitions occur

    Developmental, cellular, and biochemical basis of transparency in the glasswing butterfly Greta oto

    Get PDF
    Numerous species of Lepidoptera have transparent wings, which often possess scales of altered morphology and reduced size, and the presence of membrane surface nanostructures that dramatically reduce reflection. Optical properties and anti-reflective nanostructures have been characterized for several ‘clearwing’ Lepidoptera, but the developmental basis of wing transparency is unknown. We apply confocal and electron microscopy to create a developmental time-series in the glasswing butterfly, Greta oto, comparing transparent and non-transparent wing regions. We find that scale precursor cell density is reduced in transparent regions, and cytoskeletal organization differs between flat scales in opaque regions, and thin, bristle-like scales in transparent regions. We also reveal that sub-wavelength nanopillars on the wing membrane are wax-based, derive from wing epithelial cells and their associated microvillar projections, and demonstrate their role in enhancing-anti-reflective properties. These findings provide insight into morphogenesis of naturally organized micro- and nanostructures and may provide bioinspiration for new anti-reflective materials

    Molecular Genetics of T Cell Development

    Get PDF
    T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment

    Transitioning to adulthood with a mild intellectual disability: Young people's experiences, expectations, and aspirations

    Get PDF
    Aim: Very little attention has been paid to the views and experiences of young people with mild intellectual disabilities on the broad topics of adulthood and adult identity. The following study was undertaken to explore how young adults with mild intellectual disabilities conceptualize, relate to, and experience the process of transition. Method: Eight young adults with mild to borderline intellectual disabilities participated in semi‐structured interviews. Results were analysed using interpretive thematic analysis. Results: Two umbrella themes were identified: “On a developmental pathway” and “Negotiations in the environment”. Conclusions: The participants concerns were surprisingly similar to those commonly expressed by young adults without disabilities. Self‐perceived adult identity appeared to be affected by the participants' personal definitions of adulthood, as well as by social comparisons with both peers and adults. Finally, while concerns were expressed about their capacity to cope with responsibility, most felt optimistic about adopting full adult status in the future

    Electro-Mechanical Fredericks Effects in Nematic Gels

    Full text link
    The solid nematic equivalent of the Fredericks transition is found to depend on a critical field rather than a critical voltage as in the classical case. This arises because director anchoring is principally to the solid rubbery matrix of the nematic gel rather than to the sample surfaces. Moreover, above the threshold field, we find a competition between quartic (soft) and conventional harmonic elasticity which dictates the director response. By including a small degree of initial director misorientation, the calculated field variation of optical anisotropy agrees well with the conoscopy measurements of Chang et al (Phys.Rev.E56, 595, 1997) of the electro-optical response of nematic gels.Comment: Latex (revtex style), 5 EPS figures, submitted to PRE, corrections to discussion of fig.3, cosmetic change

    Förster Resonance Energy Transfer (FRET) Correlates of Altered Subunit Stoichiometry in Cys-Loop Receptors, Exemplified by Nicotinic α4β2

    Get PDF
    We provide a theory for employing Förster resonance energy transfer (FRET) measurements to determine altered heteropentameric ion channel stoichiometries in intracellular compartments of living cells. We simulate FRET within nicotinic receptors (nAChRs) whose α4 and β2 subunits contain acceptor and donor fluorescent protein moieties, respectively, within the cytoplasmic loops. We predict FRET and normalized FRET (NFRET) for the two predominant stoichiometries, (α4)3(β2)2 vs. (α4)2(β2)3. Studying the ratio between FRET or NFRET for the two stoichiometries, minimizes distortions due to various photophysical uncertainties. Within a range of assumptions concerning the distance between fluorophores, deviations from plane pentameric geometry, and other asymmetries, the predicted FRET and NFRET for (α4)3(β2)2 exceeds that of (α4)2(β2)3. The simulations account for published data on transfected Neuro2a cells in which α4β2 stoichiometries were manipulated by varying fluorescent subunit cDNA ratios: NFRET decreased monotonically from (α4)3(β2)2 stoichiometry to mostly (α4)2(β2)3. The simulations also account for previous macroscopic and single-channel observations that pharmacological chaperoning by nicotine and cytisine increase the (α4)2(β2)3 and (α4)3(β2)2 populations, respectively. We also analyze sources of variability. NFRET-based monitoring of changes in subunit stoichiometry can contribute usefully to studies on Cys-loop receptors
    corecore