17 research outputs found
The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson's disease patients
Cytochrome P450 2D6 (CYP2D6) is a drug-metabolizing enzyme expressed in the brain that also metabolizes endogenous neural compounds (e.g., catecholamines) and inactivates neurotoxins (e.g., 1-methyl-4-thenyl-1,2,3,6-tetrahydropyridine; MPTP). Genetically poor CYP2D6 metabolizers are at higher risk for developing Parkinson's disease (PD), a risk that increases with exposure to pesticides. As age is a risk factor for PD we measured the ontogenic expression of CYP2D6 in human brain, and compared brain CYP2D6 levels in PD cases with age-matched controls. CYP2D6 increased from fetal to 80 years of age (n = 76), exhibiting 3 distinct phases of change. Compared with PD controls, PD cases had approximately 40% lower CYP2D6 levels in the frontal cortex, cerebellum, and the hippocampus, even when controlling for CYP2D6 genotype. In contrast, CYP2D6 levels in cases were similar to controls in PD-affected brain areas, the substantia nigra, and caudate, consistent with higher astrocytic and cellular CYP2D6 staining observed in PD cases. In summary, the lower CYP2D6 levels in PD cases may have reduced their ability to inactivate PD-causing neurotoxins contributing to their disease risk
Isolation and characterization of porcine adipose tissue-derived adult stem cells
Background: Stem cell characteristics such as self-renewal, differentiation and expression of CD34 and CD44 stem cell markers have not been identified in porcine adipose tissue-derived adult stem (ADAS) cells. The objective of this study was to develop a protocol for the isolation and culture of porcine adipose tissue-derived cells and to determine stem cell-like characteristics. Methods: Primary cultures were established and cell cultures were maintained. Cloning capacity was determined using a ring cloning procedure. Primary cultures and clones were differentiated and stained for multiple differentiated phenotypes. CD34 and CD44 messenger ribonucleic acid (mRNA) was isolated and reverse transcriptase polymerase chain reaction was used to compare expression profiles. Results: An average of 2,700,000 nucleated cells/ml was isolated; 26% were adherent, and cells completed a cell cycle approximately every 3.3 days. Ring cloning identified 19 colonies. Primary cultures and clones were determined to differentiate along osteogenic, adipogenic and chondrogenic tissue lineages. The mRNA expression profiles showed CD34 expression was higher for undifferentiated ADAS cells versus differentiated cell types and the CD34 expression level was lower than that of CD44 among differentiated cells. Conclusion: Improved culture conditions and defined cellular characteristics of these porcine ADAS cells have been identified. Porcine ADAS can self-renew, can differentiate into multiple tissue lineages and they express CD34. Copyright © 2008 S. Karger AG
α-Synuclein and dopamine at the crossroads of Parkinson's disease
α-Synuclein is central to the Lewy body neuropathology of Parkinson's disease (PD), a devastating neurodegenerative disorder characterized by numerous motor and non-motor manifestations. The cardinal motor symptoms are linked to death of dopaminergic neurons in the nigrostriatal pathway. Here we ask why these neurons are preferentially susceptible to neurodegeneration in PD and how α-synuclein is involved. To address these questions we bring together recent findings from genome-wide association studies, which reveal the involvement of α-synuclein gene variants in sporadic PD, with recent studies highlighting important roles for α-synuclein in synaptic transmission and dopaminergic neuron physiology. These latest advances add to our understanding of PD etiology and provide a central link between the genetic findings and neurodegeneration observed in sporadic PD