54 research outputs found

    Tunka Advanced Instrument for cosmic rays and Gamma Astronomy

    Full text link
    The paper is a script of a lecture given at the ISAPP-Baikal summer school in 2018. The lecture gives an overview of the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA) facility including historical introduction, description of existing and future setups, and outreach and open data activities.Comment: Lectures given at the ISAPP-Baikal Summer School 2018: Exploring the Universe through multiple messengers, 12-21 July 2018, Bol'shie Koty, Russi

    Method of Separation Between Light and Heavy Groups of Primary CR Nuclei by LDF of Cherenkov Light in the Range 300–3000 TeV

    Get PDF
    The problem of chemical composition below the knee in the cosmic-ray energy spectrum has not yet been solved due to low statistics collected from direct experiments. In the HiSCORE experiment the lateral distribution functions (LDF) of Cherenkov light of EASs with energy greater than hundreds of TeV can be measured in detail for millions of individual events. A full steepness of LDF is sensitive to the depth of shower maximum and as a result to primary particle type. In this paper, we developed a parametric method of separation between heavy and light groups of nuclei using the ’knee-like’ approximation of LDF and taking into account measurement uncertainty

    TAIGA -- an advanced hybrid detector complex for astroparticle physics and high energy gamma-ray astronomy

    Full text link
    The physical motivations, present status, main results in study of cosmic rays and in the field of gamma-ray astronomy as well future plans of the TAIGA-1 (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) project are presented. The TAIGA observatory addresses ground-based gamma-ray astronomy and astroparticle physics at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV. The pilot TAIGA-1 complex is located in the Tunka valley, ~50 km west from the southern tip of the lake Baikal.Comment: Submission to SciPost Phys. Proc., 10 pages, 2 figure

    Primary Cosmic Rays Energy Spectrum and Mean Mass Composition by the Data of the TAIGA Astrophysical Complex

    Full text link
    The corrected dependence of the mean depth of the EAS maximum XmaxX_{max} on the energy was obtained from the data of the Tunka-133 array for 7 years and the TAIGA-HiSCORE array for 2 year. The parameter lnA\langle\ln A\rangle, characterizing the mean mass compositon was derived from these results. The differential energy spectrum of primary cosmic rays in the energy range of 210142\cdot 10^{14} - 210162\cdot 10^{16}\,eV was reconstructed using the new parameter Q100Q_{100} the Cherenkov light flux at the core distance 100 m.}Comment: 6 pages, 3 figures, Submitted to SciPost Phys.Pro

    The Search for Diffuse Gamma Rays Using Data from the Tunka-Grande Experiment

    No full text
    The Tunka-Grande array is part of an experimental complex located in the Tunka Valley (Republic of Buryatia, Russia) about 50 km from Lake Baikal. This complex also contains the Tunka-133 and Tunka-Rex arrays. The aim of this complex is to study the primary cosmic ray energy spectrum and mass composition in the energy range of 1016–1018 eV, and to search for diffuse gamma rays in the energy range of 5 × 1016–5 × 1017 eV. The design of the Tunka-Grande array and the procedure for reconstructing the parameters of extensive air showers (EASes) are described, and preliminary results are presented from the search for diffuse gamma rays with energies of more than 5 × 1016 eV

    Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA)

    Get PDF
    Up to several 10s of TeV, Imaging Air Cherenkov Telescopes (IACTs) have proven to be the instruments of choice for GeV/TeV gamma-ray astronomy due to their good reconstrucion quality and gamma-hadron separation power. However, sensitive observations at and above 100 TeV require very large effective areas (10 km(2) and more), which is difficult and expensive to achieve.The alternative to IACTs are shower front sampling arrays (non-imaging technique or timing-arrays) with a large area and a wide field of view. Such experiments provide good core position, energy and angular resolution, but only poor gamma-hadron separation. Combining both experimental approaches, using the strengths of both techniques, could optimize the sensitivity to the highest energies.The TAIGA project plans to combine the non-imaging HiSCORE [8] array with small (∼10m(2)) imaging telescopes. This paper covers simulation results of this hybrid approach

    The wide-aperture gamma-ray telescope TAIGA-HiSCORE in the Tunka Valley: Design, composition and commissioning

    No full text
    The new TAIGA-HiSCORE non-imaging Cherenkov array aims to detect air showers induced by gamma rays above 30 TeV and to study cosmic rays above 100 TeV. TAIGA-HiSCORE is made of integrating air Cherenkov detector stations with a wide field of view (0.6 sr), placed at a distance of about 100 m. They cover an area of initially ∼0.25 km2^2 (prototype array), and of ∼5 km2^2 at the final phase of the experiment. Each station includes 4 PMTs with 20 or 25 cm diameter, equipped with light guides shaped as Winstone cones. We describe the design, specifications of the read-out, DAQ and control and monitoring systems of the array. The present 28 detector stations of the TAIGA-HiSCORE engineering setup are in operation since September 2015

    Towards gamma-ray astronomy with timing arrays

    No full text
    The gamma-ray energy regime beyond 10 TeV is crucial for the search for the most energetic Galactic accelerators. The energy spectra of most known gamma-ray emitters only reach up to few 10s of TeV, with 80 TeV from the Crab Nebula being the highest energy so far observed significantly. Uncovering their spectral shape up to few 100 TeV could answer the question whether some of these objects are cosmic ray Pevatrons, i.e. Galactic PeV accelerators.Sensitive observations in this energy range and beyond require very large effective detector areas of several 10s to 100 square-km. While imaging air Cherenkov telescopes have proven to be the instruments of choice in the GeV to TeV energy range, very large area telescope arrays are limited by the number of required readout channels per instrumented square-km (due to the large number of channels per telescope). Alternatively, the shower-front sampling technique allows to instrument large effective areas and also naturally provides large viewing angles of the instrument. Solely measuring the shower front light density and timing (hence timing- arrays), the primary particle properties are reconstructed on the basis of the measured lateral density function and the shower front arrival times. This presentation gives an overview of the technique, its goals, and future perspective
    corecore