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7Werner Heisenberg Institut, Föhringer Ring 6, 80805, München, Germany
8IZMIRAN, Troitsk, Moscow Region, Russia
9Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia
10Institute for Nuclear Research of the Russian Academy of Sciences 60th October
Anniversary st., 7a, 117312, Moscow, Russia
11Skobeltsyn institute for Nuclear Physics, Lomonosov Moscow State University, 1 Leninskie
gory, 119991 Moscow, Russia
12Institute of Space Science, Bucharest, Romania

E-mail: maike.kunnas@physik.uni-hamburg.de

24th European Cosmic Ray Symposium (ECRS2014) IOP Publishing
Journal of Physics: Conference Series 632 (2015) 012040 doi:10.1088/1742-6596/632/1/012040

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Abstract.
Up to several 10s of TeV, Imaging Air Cherenkov Telescopes (IACTs) have proven to be

the instruments of choice for GeV/TeV gamma-ray astronomy due to their good reconstrucion
quality and gamma-hadron separation power. However, sensitive observations at and above 100
TeV require very large effective areas (10 km2 and more), which is difficult and expensive to
achieve.

The alternative to IACTs are shower front sampling arrays (non-imaging technique or
timing-arrays) with a large area and a wide field of view. Such experiments provide good core
position, energy and angular resolution, but only poor gamma-hadron separation. Combining
both experimental approaches, using the strengths of both techniques, could optimize the
sensitivity to the highest energies.

The TAIGA project plans to combine the non-imaging HiSCORE [8] array with small
(∼10m2) imaging telescopes. This paper covers simulation results of this hybrid approach.

1. A hybrid system
A pure IACT system uses two or more telescopes with (most often tesselated) mirrors and
multi-channel cameras to take images of extensive air showers (EAS). These images give a good
estimation of the nature of the primary particle, but incident angle and core position can only be
precisely reconstructed if more than one image of a shower is taken. This sets an upper limit to
the spacing of the telescopes of about 300 m since the telescopes need to be inside the Cherenkov
light cone of the shower. But for high energy measurements, one requires huge effective areas
due to the low flux, which means a huge area needs to be covered with detectors, and that is
too expensive to do with telescopes.

On the other hand, shower front sampling array stations are (comparatively) cheap and give
a good reconstruction of core position and incident angle, but the gamma hadron separation
power is only weak at the threshold energies (∼10 TeV)[2].

Figure 1. Principle for the
combination of IACT and shower
front sampling array observation.

To cover a large area with detectors, we want to increase the spacing of our telescopes to about
600 m. This way, the showers are seen by only one telescope at a time, but the reconstruction
of these monoscopic images can benefit from the HISCORE timing array, combining both
techniques’ strengths and canceling out their weaknesses: Taking the core position and incident
angle from the shower front sampling array removes the IACT’s need for stereoscopy, thus
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enables an increase of telescope spacing without loss of gamma hadron separation power and
therefore makes it possible to cover large areas with fewer telescopes (also see Tluczykont et al,
these proceedings).

TAIGA itself will be a combination of small IACT telescopes (in development), the HiSCORE
array (Hundred * i Square-km Cosmic Origin Explorer, shower front sampling array, currently in
deployment)[10] and the Tunka-Grande scintillation array (photon-electron and muon detection,
planned) at Tunka valley, Russia (51◦ 48’ 35” N, 103◦ 04’ 02” E, 675 m a.s.l.). The muon
detectors are envisaged for gamma-hadron separation at energies beyond 100 TeV. In the future,
a radio extension is planned succeeding Tunka-Rex [12]. This paper will focus on the combination
of the shower front sampling array and the IACTs.

The intended telescope parameters are:

• 4.3 m tesselated mirror dish, Davies-Cotton design

• Mirror segment diameter 60 cm, 34 segments

• 4.75 m focal length

• 8◦ telescope Field of View (FoV)

• 397 camera pixels with about 0.38◦ FoV each

• 600 m spacing

The HiSCORE sampling array consists of photomultiplier tubes (PMTs) looking directly into
the sky through Winston Cones with 4 PMTs per station and about 120 m spacing betweeen
stations. Since 10/2013 a 9 station engineering array is running and a 28 station array is installed
since 2014, allowing to start observation of the most bright gamma-sources. In the future, a
large array of the order of 10 km2 is envisaged.

2. Simulation
To evaluate the telescope design and gamma hadron separation power of the system, a Monte-
Carlo (MC) simulation of the joint operation of the Tunka-HiSCORE wide-angle array and a
Cherenkov telescope with image analysis is carried out. The efficiency of hadron background
suppression (Q-factor) under gamma-quanta events separation is evaluated. This simulation is
done in two steps:

1. Raw MC air shower data are generated with the CORSIKA code [3] including the package
for EAS Cherenkov light data (IACT option, hadronic interaction models QGSJET [4] and
Gheisha [5]). Here the nature of the primary and its properties (energy range, zenith angle,
number of showers) are chosen by the user as well as the detector layout, i.e. the telescope/station
positions.

2a. From the CORSIKA output the IACT response simulation with sim telarray [6] is run.
sim telarray executes a raytracing routine with an automatic reconstruction of the MC images
(see fig. 2, though manual reconstruction is possible) and includes all the important details of
the telescope design, for example:

• Mirror dish configuration

• Mirror details

• Camera configuration

• Camera details (PMT response, funnels etc.)

• Electronic response

• Mast and camera shadowing
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Figure 2. Example for a
sim telarray-generated EAS image
of a 37.5 TeV gamma primary at
107 m core distance.

Figure 3. IACT Point Spread Function (PSF) for angles of 0-5◦from the optical axis. Minimal
PSF without mirror misalignment options. The structures are an effect of the outermost mirror
segments.

Right now, we have over 80 million events simulated, statistics still rising.

2b. Also, from the same CORSIKA output, the HiSCORE detector response is simulated
with sim score [7], a custom simulation software based on the IACT package, to determine
the core position/resolution and shower direction/angular resolution of the pure array and to
evaluate different array layouts and electronic systems.

3. Simulation results

3.1. Point spread function (PSF)

One MC simulation study is the Point Spread Function (PSF) of our telescope. A good PSF
is essential for good image quality and thus for good reconstruction. The mirror dish of our
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Figure 4. Comparison with expected values for the PSF for our F/D = 1.1

telescope is composed of spherical mirror tiles smaller than the overall dish size, as usual for
a Davies-Cotton design. This introduces another telescope parameter: The tesselation ratio α.
The tesselation ratio is the relation between individual mirror segment diameter dtile and the
main dish diameter Ddish:

α =
dtile
Ddish

(1)

Therefore, the bigger the tesselation ratio, the bigger the influence of the individual mirror
tiles. With the high field of view (FoV) of about 8◦and a tesselation ratio of 0.13, the aberration
effects of the mirror structure come into play. Therefore their impact needs to be evaluated.

Compared to the size of a single pixel, the psf shows that even for an angle of 5◦to the optical
axis, the PSF is still significantly smaller than a pixel (compare Fig. 3). Our PSF is not as good
as the predictions made bei Schliesser and Mirzoyan [11] imply (see Fig. 4), but this is expected
since our tesselation ratio is larger, increasing the effect of aberrations of the spherical mirror
tiles.

3.2. Gamma-hadron separation
In a shower sampling array, the steepness of the air shower’s light density function is used for
primary particle identification [9]. In the low energy range (<10 TeV) however this method
works only poorly, especially for gammas and protons [7].

In this range, IACT image analysis is the far more powerful tool to identify the primary’s
nature.

The parameter that is used for separating the different kinds of primaries with an IACT is the
width of the camera image [13], derived from the second moment of the intensity distribution
after image cleaning. This width depends mainly on primary energy (E), impact parameter (d)
(e.g. distance between telescope and shower core) and the type of the primary. With the first
two parameters measurable by the shower front sampling array, the parameter left is the type,
which determines the distribution’s shape. Proton showers have a broader width distribution
due to their hadronic shower components. To seperate gammas from hadrons, a width cut can
be applied. The parameter Q shows the quality of this cut:
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Figure 5. Raw width distribution for showers from the zenith in the energy range of 0.5-50
TeV. Red: Gammas, Green: Protons. Left: Differential distribution. It can be seen that the
proton distribution is broader than the gamma distribution and a bit shifted towards bigger
widths, but the two peaks still overlap much. Right: Cumulative distribution and quality factor
Q for the width cut at. If a cut is made on the raw data, the maximum quality factor is less
than 1.5

Q =
εγ√
εp

(2)

with

εi =
ni(< w)

ni
(3)

However, the distributions for gammas and protons overlap considerably due to the varying
core distances, so that a cut on this parameter is not satisfying (see fig. 5). To improve it,
the measured widths are rescaled to the expected value for a gamma-ray induced shower. For
this, a three-dimensional lookup-table is generated from MC data, with the parameters core
distance, image size and expected width. Then, each event’s width is divided by the respective
lookup-table entry (speak: scaled), which makes the gamma and the proton distribution peaks
move apart (see fig. 6). This is the point where the combination takes place: To find the right
lookup-table entry, core distance and zenith angle are reconstructed from the sampling array,
and we get the Hybrid Scaled Width (HSCW):

HSCW =
wtel

wγMC(darray, sizetel)
(4)

Scaling the width increases the quality factor from about 1.4 to almost 2.2, which is
significantly better than the quality for pure HiSCORE reconstruction, which achieves only
a Q-factor of 1 at the threshold and only approaches 2 at several 100s of TeV. [7]

The results shown in fig. 5 and 6 are the width values. For now, we took the core position
for finding the correct lookup-table entry for scaling directly from the MC data. For a first
estimate on TAIGA’s combined reconstruction quality, we’ll randomize the MC core position by
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Figure 6. Hybrid scaled width (HSCW) distribution for showers from the zenith in the energy
range of 0.5-50 TeV. Red: Gammas, Green: Protons. Left: Differential distribution. Compared
to figure 5, the gamma and the proton distribution have moved apart significantly. Right:
Cumulative distribution and quality factor Q for the width cut. If a cut is made on the HSCW,
the maximum quality factor is almost 2.2

the HiSCORE core resolution and use this randomized core position in the width scaling (toy
core simulation). We expect the quality to decrease only little, down to about 2.0.

As a next step, a full hybrid simulation is planned, including a combination of reconstruction
algorithms. The monoscopic direction information from the IACT image will be taken into
account in the reconstruction of core position from the array, lowering the uncertainties on this
parameter, and the gamma-hadron separation by shower front profiling of the array will be
combined with the image reconstruction. We expect to improve the Q-factor at low energies to
3.

Typical stereoscopic systems of Cherenkov telescopes achieve a gamma-hadron separation
Q-factor using the mean scaled width cut of about 6. The often stated factor of 104 results from
combining the width and directional cut (separating the isotropic hadrons by a tight angular cut
around the point source of interest). This cut can be done with the hybrid array on a similar
quality level, since the angular resolution of the timing array alone is comparable to stereoscopic
IACT systems. Here however, we only state the width cut quality.

4. Conclusion and outlook
The TAIGA hybrid system is the first to combine the strengths of Cherenkov timing arrays and
IACT telescopes. Our telescope design concept gives a good imaging quality as shown by the
PSF. The combination of IACTs with the HiSCORE timing array will result in an improved
gamma-hadron separation and a maximisation of the effective area.

The next step is a toy core analysis, then a full hybrid simulation both for array and IACT.
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