31 research outputs found

    Observations of molecules in high redshift galaxies

    Get PDF
    I present an overview of the molecular gas observations in high redshift galaxies. This field has seen tremendous progress in the past few years, with an increased number of detections of other molecules than CO. The molecular line observations are done towards different classes of massive starbursts, including submillimeter galaxies, quasars, and massive gas-rich disks. I will highlight results of detections of HCN, HCO+, and other small molecules, as well as the Spitzer detections of PAHs. Additionally, I will discuss about the excitation of CO and other species in the high-z galaxies and put this in the context of new telescopes such as ALMA

    Stacking of interferometric data

    Get PDF
    Radio and mm observations play an important role in determining the star formation properties of high redshift galaxies. However, most galaxies at high redshift are too faint to be detected individually at these wavelengths. A way to study this population of galaxies is to use stacking. By averaging the emission of a large number of galaxies detected in optical or near infrared surveys, we can achieve statistical detection. We investigate methods for stacking data from interferometric surveys. Interferometry poses unique challenges in stacking due to the nature of imaging of this data. We have compared directly stacking the uv data with stacking of the imaged data, the latter being the typically used approach. Using simulated data, we find that uv-stacking may provide around 50% less noise and that image based stacking systematically loses around 10% of the flux

    Structure and morphology of X-ray selected AGN hosts at 1<z<3 in CANDELS-COSMOS field

    Get PDF
    We analyze morphologies of the host galaxies of 35 X-ray selected active galactic nucleus (AGNs) at z∼2z\sim2 in the Cosmic Evolution Survey (COSMOS) field using Hubble Space Telescope/WFC3 imaging taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We build a control sample of 350 galaxies in total, by selecting ten non-active galaxies drawn from the same field with the similar stellar mass and redshift for each AGN host. By performing two dimensional fitting with GALFIT on the surface brightness profile, we find that the distribution of Seˋ\`ersic index (n) of AGN hosts does not show a statistical difference from that of the control sample. We measure the nonparametric morphological parameters (the asymmetry index A, the Gini coefficient G, the concentration index C and the M20 index) based on point source subtracted images. All the distributions of these morphological parameters of AGN hosts are consistent with those of the control sample. We finally investigate the fraction of distorted morphologies in both samples by visual classification. Only ∼\sim15% of the AGN hosts have highly distorted morphologies, possibly due to a major merger or interaction. We find there is no significant difference in the distortion fractions between the AGN host sample and control sample. We conclude that the morphologies of X-ray selected AGN hosts are similar to those of nonactive galaxies and most AGN activity is not triggered by major merger.Comment: 5 pages, 3 figures, accepted for publication in The Astrophysical Journal Letter

    ALMA Reveals a Gas-rich, Maximum Starburst in the Hyperluminous, Dust-obscured Quasar W0533-3401 at z similar to 2.9

    Get PDF
    We present ALMA observations and multiwavelength spectral energy distribution analysis in a Wide-field Infrared Survey Explorer-selected, hyperluminous dust-obscured quasar W0533-3401 at z = 2.9. We derive the physical properties of each of its components, such as molecular gas, stars, dust, and the central supermassive black hole (SMBH). Both the dust continuum at 3 mm and the CO (3-2) line are detected. The derived molecular gas mass M-gas = 8.4 x 10(10) M-circle dot and its fraction f(gas) = 0.7 suggest that W0533-3401 is gas-rich. The star formation rate (SFR) has been estimated to be similar to 3000-7000M(circle dot) yr(-1) by using different methods. The high values of SFR and specific SFR suggest that W0533-3401 is a maximum starburst. The corresponding gas depletion timescales are very short (t(depl) similar to 12-28 Myr). The CO (3-2) emission line is marginally resolved and has a velocity gradient, which is possibly due to a rotating gas disk, gas outflow, or merger. Finally, we infer the black hole mass growth rate of W0533-3401 ((M)over dot(BH) = 49 M-circle dot yr(-1)), which suggests a rapid growth of the central SMBH. The observed black hole to stellar mass ratio M-BH/M-* of W0533-3401, which is dependent on the adopted Eddington ratio, is over one order of magnitude higher than the local value, and is evolving toward the evolutionary trend of unobscured quasars. Our results are consistent with the scenario that W0533-3401, with both a gas-rich maximum starburst and a rapid black hole growth, is experiencing a short transition phase toward an unobscured quasar

    Can dusty Lyman break galaxies produce the submillimeter counts and background? Lessons from lensed Lyman break galaxies

    Full text link
    Can the submillimeter counts and background be produced by applying a locally derived extinction correction to the population of Lyman break galaxies? We investigate the submillimeter emission of two strongly lensed Lyman break galaxies (MS1512+36-cB58 and MS1358+62-G1) and find that the procedure that is used to predict the submillimeter emission of the Lyman break galaxy population overpredicts the observed 850micron fluxes by up to a factor of 14. This result calls for caution in applying local correlations to distant galaxies. It also shows that large extinction corrections on Lyman break galaxies should be viewed with skepticism. It is concluded that the Lyman break galaxies may contribute to the submillimeter background at the 25 to 50% level. The brighter submillimeter galaxies making up the rest of the background are either not detected in optical surveys, or if they are detected, their submillimeter emission cannot be reliably estimated from their rest-frame ultraviolet properties.Comment: 4 pages, 1 embedded postscript figure; to appear in proceedings of the UMass/INAOE conference on Deep Millimeter Surveys, eds. J. Lowenthal and D. Hughes; revised version corrects small numerical error

    SMM J04135+10277: a distant QSO-starburst system caught by ALMA

    Get PDF
    The gas content of galaxies is a key factor for their growth, starting from star formation and black hole accretion to galaxy mergers. Thus, characterizing its properties through observations of tracers like the CO emission line is of big importance in order to understand the bigger picture of galaxy evolution. We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of dust continuum, CO(5-4) and CO(8-7) line emission in the quasar-star-forming companion system SMM J04135+10277 (z = 2.84). Earlier low-J CO studies of this system found a huge molecular gas reservoir associated with the companion galaxy, while the quasar appeared gas-poor. Our CO observations revealed that the host galaxy of the quasar is also gas-rich, with an estimated molecular gas mass of ∼ (0.7-2.3) 7 10^{10} M_{☉}. The CO line profiles of the companion galaxy are very broad (∼ 1000 km s^{-1}), and show signs of rotation of a compact, massive system. In contrast to previous far-infrared observations, we resolve the continuum emission and detect both sources, with the companion galaxy dominating the dust continuum and the quasar having a ∼ 25{{ per cent}} contribution to the total dust emission. By fitting the infrared spectral energy distribution of the sources with MR-MOOSE and empirical templates, the infrared luminosities of the quasar and the companion are in the range of L_{IR, QSO}∼ (2.1-9.6) 7 10^{12} L_{☉} and L_{IR, Comp.}∼ (2.4-24) 7 10^{12} L_{☉}, while the estimated star formation rates are ∼ 210-960 and ∼ 240-2400 M_{☉} yr^{-1}, respectively. Our results demonstrate that non-detection of low-J CO transition lines in similar sources does not necessarily imply the absence of massive molecular gas reservoir but that the excitation conditions favour the excitation of high-J transitions

    The Spectral Energy Distribution of the Hyperluminous, Hot Dust-obscured Galaxy W2246-0526

    Get PDF
    Hot dust-obscured galaxies (Hot DOGs) are a luminous, dust-obscured population recently discovered in the WISE All-Sky survey. Multiwavelength follow-up observations suggest that they are mainly powered by accreting supermassive black holes (SMBHs), lying in dense environments, and being in the transition phase between extreme starburst and UV-bright quasars. Therefore, they are good candidates for studying the interplay between SMBHs, star formation, and environment. W2246-0526 (hereafter, W2246), a Hot DOG at z ∼ 4.6, has been taken as the most luminous galaxy known in the universe. Revealed by the multiwavelength images, the previous Herschel SPIRE photometry of W2246 is contaminated by a foreground galaxy (W2246f), resulting in an overestimation of its total IR luminosity by a factor of about two. We perfor m the rest-frame UV/optical-to-far-IR spectral energy distribution (SED) analysis with SED3FIT and re-estimate its physical properties. The derived stellar mass M ∗ = 4.3 7 10 11 M ⊙ makes it among the most massive galaxies with spectroscopic redshift z &gt; 4.5. Its structure is extremely compact and requires an effective mechanism to puff-up. Most of ( &gt; 95%) its IR luminosity is from AGN torus emission, revealing the rapid growth of the central SMBH. We also predict that W2246 may have a significant molecular gas reservoir based on the dust mass estimation

    Accurate dust temperature determination in a z = 7.13 galaxy

    Get PDF
    We report ALMA Band 9 continuum observations of the normal, dusty star-forming galaxy A1689-zD1 at z = 7.13, resulting in a ∼4.6 σ detection at 702 GHz. For the first time, these observations probe the far-infrared spectrum shortward of the emission peak of a galaxy in the Epoch of Reionization (EoR). Together with ancillary data from earlier works, we derive the dust temperature, Td, and mass, Md, of A1689-zD1 using both traditional modified blackbody spectral energy density fitting, and a new method that relies only on the [C ii] 158 μm line and underlying continuum data. The two methods give Td = (42+13-7, 40+13-) K, and Md} = (1.7+1.3-0.7, 2.0+1.8-1.0), 7, 107, M⊙. Band 9 observations improve the accuracy of the dust temperature (mass) estimate by ∼50 per cent (6 times). The derived temperatures confirm the reported increasing Td-redshift trend between z = 0 and 8; the dust mass is consistent with a supernova origin. Although A1689-zD1 is a normal UV-selected galaxy, our results, implying that ∼85 per cent of its star-formation rate is obscured, underline the non-negligible effects of dust in EoR galaxies

    Multiply-imaged submm galaxy in a z~2.5 group

    Full text link
    We present observations of a remarkable submillimetre-selected galaxy, SMMJ16359+6612. This distant galaxy lies behind the core of a massive cluster of galaxies, A2218, and is gravitationally lensed by the foreground cluster into three discrete images which were identified in deep submillimetre maps of the cluster core at both 450 and 850micron. Subsequent follow-up using deep optical and NIR images identify a faint counterpart to each of the 3 images, with similar red optical--NIR colours and HST morphologies. By exploiting a detailed mass model for the cluster lens we estimate that the combined images of this galaxy are magnified by a factor of ~45, implying that this galaxy would have un-lensed magnitudes K_s=22.9 and I=26.1, and an un-lensed 850micron flux density of only 0.8mJy. Moreover, the highly constrained lens model predicted the redshift of SMMJ16359+6612 to be z=2.6+/-0.4. We confirm this estimate using deep optical and NIR Keck spectroscopy, measuring a redshift of z=2.516. SMMJ16359+6612 is the faintest submm-selected galaxy so far identified with a precise redshift. Thanks to the large gravitational magnification of this source, we identify 3 sub-components in this submm galaxy, which are also seen in the NIRSPEC data, arguing for either a strong dust (lane) absorption or a merger. Interestingly, there are 2 other highly-amplified galaxies at almost identical redshifts in this field (although neither is a strong submm emitter). The 3 galaxies lie within a ~100kpc region on the background sky, suggesting this submm galaxy is located in a dense high-redshift group.Comment: 7 pages, 1 JPEG figure, MNRAS in pres

    ALMA Lensing Cluster Survey: A strongly lensed multiply imaged dusty system at z ≥ 6

    Get PDF
    We report the discovery of an intrinsically faint, quintuply-imaged, dusty galaxy MACS0600-z6 at a redshift z = 6.07 viewed through the cluster MACSJ0600.1–2008 (z = 0.46). A ≃ 4σ dust detection is seen at 1.2mm as part of the ALMA Lensing Cluster Survey (ALCS), an on-going ALMA Large programme, and the redshift is secured via [C II] 158 μm emission described in a companion paper. In addition, spectroscopic follow-up with GMOS/Gemini-North shows a break in the galaxy’s spectrum, consistent with the Lyman break at that redshift. We use a detailed mass model of the cluster and infer a magnification μ ≳ 30 for the most magnified image of this galaxy, which provides an unprecedented opportunity to probe the physical properties of a sub-luminous galaxy at the end of cosmic reionization. Based on the spectral energy distribution, we infer lensing-corrected stellar and dust masses of 2.9-2.3+115 7 109 and 4.8-3.4+45 7 106 M☉, respectively, a star formation rate of 9.7-6.6+220 M☉ yr−1, an intrinsic size of 0.54-0.14+026 kpc, and a luminosity-weighted age of 200 \ub1 100 Myr. Strikingly, the dust production rate in this relatively young galaxy appears to be larger than that observed for equivalent, lower redshift sources. We discuss if this implies that early supernovae are more efficient dust producers and the consequences for using dust mass as a probe of earlier star formation
    corecore