590 research outputs found

    SEASONAL VARIABILITY OF CENTRAL ARCTIC OCEAN SEA-ICE COVER: NEW BIOMARKER (IP25 AND PIP25) DATA FROM SEDIMENT TRAPS DEPLOYED ON SOUTHERN LOMONOSOV RIDGE

    Get PDF
    During the Polarstern 1995 Expedition, a long-term mooring system with two cone-shaped multi-sampling traps was deployed at the dominantly ice-covered western slope of the southern Lomonosov Ridge (81°04.5'N, 138°54.0'E, 1712 m water depth). One trap was installed at 150 m below the sea surface, the other at 150 m above the bottom at 1550 m depth; material was collected in 20 time intervals between September 1995 and August 1996. For background data see Fahl and Nöthig (2007). Here, we present new biomarker data recording the seasonal variability of sea-ice cover. This type of data representing modern seasonal variability of the sea-ice biomarker proxies, was not available so far but may help significantly the interpretation of these proxies to be used in sedimentary records for reconstruction of paleo-sea-ice distributions. In this study, we have focused on the novel sea ice proxy IP25, a direct proxy for sea ice coverage (Belt et al., 2007). Furthermore, we used the phytoplankton-IP25 index (PIP25 Index), a further development of the IP25 index, based on the coupling of the environmental information carried by IP25 (sea ice) and brassicasterol (open-water phytoplankton productivity) (Müller et al., 2011). The interval November 1995 to June 1996 is characterized by the absence of the sea-ice proxy IP25 (except very minor values for January and April), suggesting a predominantly permanent sea ice cover at the trap location. During July/August 1996, maximum fluxes of the diatom-specific fatty acids and brassicasterol as well as maximum contents of biogenic opal (Fahl and Nöthig, 2007) indicate increased primary productivity. The marine organic matter (here POC, brassicasterol, and fatty acids) and the IP25 values decrease systematically from 150 to 1550m depth, indicating the typical biogeochemical degradation with increasing water depth. Due to the coincidence of maximum abundances of sea-ice proxies and open-ocean primary productivity proxies during the July/August time interval we propose a ice-edge situation characterized by increased phytoplankton productivity and sea-ice algae input. This interpretation is also supported by the phytoplankton-IP25 index (PIP25 Index), reaching quite high values of 0.5-0.8. It seems to be that in general PIP25 values do not change significantly between the shallow and deep trap, i.e., with increasing water depth, an important observation when thinking about the interpretation of PIP25 sedimentary records. The distinctly reduced September/October values of brassicasterol and fatty acids suggest a decrease in primary productivity, probably related to the start of new-ice formation in late September. This situation is reflected in high IP25 values and high PIP25 ratios. Whereas for October no IP25 was determined in the shallow trap, medium-high IP25 values were determined in the deep trap with maximum PIP25 ratio of about 0.7. This may indicate lateral IP25 input, but also means that in this case the PIP25 ratios should be interpreted with caution

    Modern spatial sea-ice variability in the central Arctic Ocean and adjacent marginal seas: Reconstruction from biomarker data

    Get PDF
    Sea ice is a fundamental component of Earth’s climate system, contributing to heat reduction (albedo) and deep-water formation. In order to understand processes controlling the recent dramatic reduction in Arctic sea-ice cover, it is essential to determine spatial and temporal changes in sea-ice occurrence and its natural variability in the present and past. Here, we present biomarker data from surface sediments and related to the modern spatial (seasonal) sea-ice variability in the central Arctic Ocean and adjacent marginal seas (i.e., Bering, Chukchi, Laptev and Kara seas) as well as the Fram Strait/Yermak Plateau area. We determined concentrations of the sea-ice diatom-derived biomarker “IP25″ (highly-branched isoprenoid – HBI – with 25 carbon atom; Belt et al., 2007), phytoplankton-derived biomarkers (brassicasterol and dinosterol) and terrigenous biomarkers (campesterol and Î_-sitosterol) to estimate recent sea-ice conditions in the study area. A combined phytoplankton-IP25 biomarker approach (“PIP25 index”; Müller et al., 2009, 2011) is used to reconstruct the modern sea-ice distribution more quantitatively. In addition, the distribution pattern of HBI-diene/IP25 ratios has been determined to test a proposed relationship between the diene/IP25 ratio and sea-surface temperatures in Arctic marginal ice-zone environments (Fahl and Stein, 2012; Stein et al., 2012). Assessment of sea-ice conditions based on these biomarker data display that a quite stable marginal ice zone exists along the continental shelf/slope of Kara and Laptev seas during summer/early fall. Elevated IP25 as well as brassicasterol and dinosterol values occurring in the central Kara and Laptev seas are related to extended sea-ice-cover and higher primary production (close to ice-edge situation). Further to the north and the central Arctic Ocean, lower IP25 and phytoplankton biomarker concentrations point to a more close sea-ice cover situation

    Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present

    Get PDF
    Publisher's version, source http://doi.org/10.1038/ncomms12247In the light of rapidly diminishing sea ice cover in the Arctic during the present atmospheric warming, it is imperative to study the distribution of sea ice in the past in relation to rapid climate change. Here we focus on glacial millennial-scale climatic events (Dansgaard/Oeschger events) using the sea ice proxy IP25 in combination with phytoplankton proxy data and quantification of diatom species in a record from the southeast Norwegian Sea. We demonstrate that expansion and retreat of sea ice varies consistently in pace with the rapid climate changes 90 kyr ago to present. Sea ice retreats abruptly at the start of warm interstadials, but spreads rapidly during cooling phases of the interstadials and becomes near perennial and perennial during cold stadials and Heinrich events, respectively. Low-salinity surface water and the sea ice edge spreads to the Greenland–Scotland Ridge, and during the largest Heinrich events, probably far into the Atlantic Ocean

    Evidence for a steeper Eemian than Holocene sea surface temperature gradient between Arctic and sub-Arctic regions

    Get PDF
    Sediment proxy data from the Norwegian, Greenland, and Iceland seas (Nordic seas) are presented to evaluate surface water temperature (SST) differences between Holocene and Eemian times and to deduce from these data the particular mode of surface water circulation. Records from planktic foraminiferal assemblages, CaCO3 content, oxygen isotopes of foraminifera, and iceberg-rafted debris form the main basis of interpretation. All results indicate for the Eemian comparatively cooler northern Nordic seas than for the Holocene due to a reduction in the northwardly flow of Atlantic surface water towards Fram Strait and the Arctic Ocean. Therefore, the cold polar water flow from the Arctic Ocean was less influencial in the southwestern Nordic seas during this time. As can be further deduced from the Eemian data, slightly higher Eemian SSTs are interpreted for the western Iceland Sea compared to the Norwegian Sea (ca. south of 70°N). This Eemian situation is in contrast to the Holocene when the main mass of warmest Atlantic surface water flows along the Norwegian continental margin northwards and into the Arctic Ocean. Thus, a moderate northwardly decrease in SST is observed in the eastern Nordic seas for this time, causing a meridional transfer in ocean heat. Due to this distribution in SSTs the Holocene is dominated by a meridional circulation pattern. The interpretation of the Eemian data imply a dominantly zonal surface water circulation with a steep meridional gradient in SSTs

    Neogene dinoflagellate cysts and acritarchs from the high northern latitudes and their relation to sea surface temperature

    Get PDF
    Submitted manuscript version. Published version available at https://doi.org/10.1016/j.marmicro.2017.09.003. Submitted manuscript version, licensed CC BY-NC-ND 4.0.Organic-walled dinoflagellate cysts and acritarchs are a vital tool for reconstructing past environmental change, in particular in the Neogene of the high northern latitudes where marine deposits are virtually barren of traditionally used calcareous microfossils. Yet only little is known about the paleoenvironmental value of fossil assemblages that do not have modern analogues, so that reconstructions remain qualitative. Thus, extracting their paleoecological signals still poses a major challenge, in particular on pre-Quaternary timescales. Here we unravel the relationship between species relative abundance and sea surface temperature for extinct dinoflagellate cyst and acritarch taxa from the Neogene of the Iceland Sea using palynological assemblages and organic geochemical (alkenone) data generated from the same set of samples. The reconstructed temperatures for the Miocene to Pliocene sequence of Ocean Drilling Program Site 907 range from 3 to 26 °C and our database consists of 68 dinoflagellate cyst and acritarch samples calibrated to alkenone data. The temperature range of five extant species co-occurring in the fossil assemblage agrees well with their present-day distribution providing confidence to inferred temperature ranges for extinct taxa. The 14 extinct dinoflagellate cyst and acritarch species clearly exhibit a temperature dependency in their occurrence throughout the analysed section. The dinoflagellate cyst species Batiacasphaera hirsuta, Labyrinthodinium truncatum, Cerebrocysta irregulare, Cordosphaeridium minimum, Impagidinium elongatum and Operculodinium centrocarpum s.s., and the acritarch Lavradosphaera elongatum, which are confined to the Miocene, have highest relative abundances and restricted temperature ranges at the warm end of the reconstructed temperature spectrum. The latter five species disappear when Iceland Sea surface temperatures permanently drop below 20 °C, thus indicating a distinct threshold on their occurrence. In contrast, species occurring in both the Miocene and Pliocene interval (Batiacasphaera micropapillata, Habibacysta tectata, Reticulatosphaera actinocoronata, Cymatiosphaera? invaginata) show a broader temperature range and a tolerance towards cooler conditions. Operculodinium? eirikianum may have a lower limit on its occurrence at around 10 °C. The calibration of species relative abundance versus reconstructed sea surface temperature provides a quantitative assessment of temperature ranges for extinct Miocene to Pliocene species indicating that temperature is a decisive ecological factor for regional extinctions that may explain the frequently observed asynchronous highest occurrences across different ocean basins. It demonstrates that qualitative assessments of ecological preferences solely based on (paleo) biogeographic distribution should be treated with caution. In addition to enhancing knowledge on marine palynomorph paleoecology, this study ultimately improves the application of palynomorphs for paleoenvironmental reconstructions in the Neogene of the Arctic and subarctic seas, a region essential for understanding past global climate

    Late Quaternary glacial/interglacial variability in Arctic sea ice and related organic carbon flux: A 180 ka record from Yermak Plateau

    Get PDF
    The recent dramatic decline of Arctic sea over the last decades and its controlling processes are still poorly understood. In order to distinguish between natural and anthropogenic processes controlling these changes in sea ice, we have to look back to the past beyond the times of direct measurements. For this purpose, we carried out a multi-proxy approach combining organic-geochemical data (bulk parameters: C/N, TOC, δ13Corg; biomarkers: IP25, sterols, GDGTs) with sedimentological data (core lithology, physical properties, IRD counting, XRF scanning) determined in sediments of Yermak Plateau Core PS92/039-2. This core is situated close to the modern summer ice edge and thus very sensitive for environmental changes. Based on magnetostratigraphy and correlations with dated sediment cores, this core represents the time span from MIS 6 to 1 (ca. 180,000 years) and allows the reconstruction of sea ice variability and related changes in oceanic circulation patterns and the Svalbard Barents Ice Sheet (SBIS) fluctuations during glacial/interglacial changes. As sea ice and phytoplankton biomarkers occur throughout the entire sedimentary section but show some strong variability, a more seasonal sea ice cover was probably predominant during the entire time interval, superimposed by a distinct short-term variability in extent. Significant fluctuations in most of our proxy records indicate highly variable sea ice conditions over the Yermak Plateau during MIS 6. Based on our biomarker data, the SBIS could not have reached the Yermak Plateau during MIS 6. During MIS 4 and 2, coevally elevated concentrations of the sea ice proxy IP25 and the biomarkers for phytoplankton productivity and terrigenous input point to a stationary ice margin above the core position at that time. Strengthened Atlantic Water inflow possibly coupled with katabatic winds from the protruding SBIS may have created this stable ice edge situation and the related sedimentary regime

    Deglacial release of petrogenic and permafrost carbon from the Canadian Arctic impacting the carbon cycle

    Get PDF
    AbstractThe changes in atmospheric pCO2 provide evidence for the release of large amounts of ancient carbon during the last deglaciation. However, the sources and mechanisms that contributed to this process remain unresolved. Here, we present evidence for substantial ancient terrestrial carbon remobilization in the Canadian Arctic following the Laurentide Ice Sheet retreat. Glacial-retreat-induced physical erosion of bedrock has mobilized petrogenic carbon, as revealed by sedimentary records of radiocarbon dates and thermal maturity of organic carbon from the Canadian Beaufort Sea. Additionally, coastal erosion during the meltwater pulses 1a and 1b has remobilized pre-aged carbon from permafrost. Assuming extensive petrogenic organic carbon oxidation during the glacial retreat, a model-based assessment suggests that the combined processes have contributed 12 ppm to the deglacial CO2 rise. Our findings suggest potentially positive climate feedback of ice-sheet retreat by accelerating terrestrial organic carbon remobilization and subsequent oxidation during the glacial-interglacial transition.</jats:p

    Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11

    Get PDF
    Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate

    Late Quaternary sea-ice history of northern Fram Strait/Arctic Ocean

    Get PDF
    One of the main characteristics of the Arctic Ocean is its seasonal to perennial sea-ice cover. Variations of sea-ice conditions affect the Earth’s albedo, primary production, rate of deep-water etc.. During the last decades, a drastic decrease in sea ice has been recorded, and the causes of which, i.e. natural vs. anthropogenic forcings, and their relevance within the global climate system, are subject of intense scientific and societal debate. In this context, records of past sea-ice conditions going beyond instrumental records are of major significance. These records may help to better understand the processes controlling natural sea-ice variability and to improve models for forecasts of future climatic conditions. During RV Polarstern Cruise PS92 in summer 2015, a 860 cm long sediment core (PS92/039-2) was re- covered from the eastern flank of Yermak Plateau north of the Svalbard archipelago (Peeken, 2015). Based on a preliminary age model, this sediment core probably represents the time interval from MIS 6 to MIS 1. This core, located close to the modern summer ice edge, has been selected for reconstruction of past Arctic sea-ice variability based on specific biomarkers. In this context, we have determined the ice-algae-derived sea-ice proxy IP25 (Belt et al., 2007), in combination with other biomarkers indicative for open-water conditions (cf., Müller et al., 2009, 2011). Furthermore, organic carbon fluxes were differentiated using specific biomarkers indicative for marine primary production (brassicasterol, dinosterol) and terrigenous input (campesterol, β-sitosterol). In this poster, preliminary results of our organic-geochemical and sedimentological investigations are presented. Distinct fluctuations of these biomarkers indicate several major, partly abrupt changes in sea-ice cover in the Yermak Plateau area during the late Quaternary. These changes are probably linked to changes in the inflow of Atlantic Water along the western coastline of Svalbard into the Arctic Ocean. Furthermore, the repetitive advance and retreat of the Svalbard Barents Sea Ice Sheet might have influenced the terrigenous input and the environmental setting north of Svalbard, as reflected in the sediment composition of Core PS92/039-2
    • …
    corecore