375 research outputs found

    The maintenance gap: a new theoretical perspective on the evolution of aging

    Get PDF
    One of the prevailing theories of aging, the disposable soma theory, views aging as the result of the accumulation of damage through imperfect maintenance. Aging, then, is explained from an evolutionary perspective by asserting that this lack of maintenance exists because the required resources are better invested in reproduction. However, the amount of maintenance necessary to prevent aging, β€˜maintenance requirement’ has so far been largely neglected and has certainly not been considered from an evolutionary perspective. To our knowledge we are the first to do so, and arrive at the conclusion that all maintenance requirement needs an evolutionary explanation. Increases in maintenance requirement can only be selected for if these are linked with either higher fecundity or better capabilities to cope with environmental challenges to the integrity of the organism. Several observations are suggestive of the latter kind of trade-off, the existence of which leads to the inevitable conclusion that the level of maintenance requirement is in principle unbound. Even the allocation of all available resources to maintenance could be unable to stop aging in some organisms. This has major implications for our understanding of the aging process on both the evolutionary and the mechanistic level. It means that the expected effect of measures to reallocate resources to maintenance from reproduction may be small in some species. We need to have an idea of how much maintenance is necessary in the first place. Our explorations of how natural selection is expected to act on the maintenance requirement provides the first step in understanding this

    Ill or just old? Towards a conceptual framework of the relation between ageing and disease

    Get PDF
    BACKGROUND: Is this person ill or just old? This question reflects the pondering mind of a doctor while interpreting the complaints of an elderly person who seeks his help. Many doctors think that ageing is a non-disease. Accordingly, various attempts have been undertaken to separate pathological ageing from normal ageing. However, the existence of a normal ageing process distinct from the pathological processes causing disease later in life can be questioned. DISCUSSION: Ageing is the accumulation of damage to somatic cells, leading to cellular dysfunction, and culminates in organ dysfunction and an increased vulnerability to death. Analogously, chronic diseases initiate early in life and their development is slow before they become clinically apparent and culminate in disability or death. The definition of disease is also subject to current opinions and scientific understanding and usually, it is an act of individual creativity when physical changes are recognised as symptoms of a new disease. New diseases, however, are only rarely really new. Most new diseases have gone undiagnosed because their signs and symptoms escaped recognition or were interpreted otherwise. Many physical changes in the elderly that are not yet recognised as a disease are thus ascribed to normal ageing. Therefore, the distinction between normal ageing and disease late in life seems in large part arbitrary. SUMMARY: We think that normal ageing cannot be separated from pathological processes causing disease later in life, and we propose that the distinction is avoided

    A dynamic framework for the study of optimal birth intervals reveals the importance of sibling competition and mortality risks

    Get PDF
    Human reproductive patterns have been well studied, but the mechanisms by which physiology, ecology and existing kin interact to affect the life history need quantification. Here, we create a model to investigate how age-specific interbirth intervals adapt to environmental and intrinsic mortality, and how birth patterns can be shaped by competition and help between siblings. The model provides a flexible framework for studying the processes underlying human reproductive scheduling. We developed a state-based optimality model to determine age-dependent and family-dependent sets of reproductive strategies, including the state of the mother and her offspring. We parameterized the model with realistic mortality curves derived from five human populations. Overall, optimal birth intervals increase until the age of 30 after which they remain relatively constant until the end of the reproductive lifespan. Offspring helping each other does not have much effect on birth intervals. Increasing infant and senescent mortality in different populations decreases interbirth intervals. We show that sibling competition and infant mortality interact to lengthen interbirth intervals. In lower-mortality populations, intense sibling competition pushes births further apart. Varying the adult risk of mortality alone has no effect on birth intervals between populations; competition between offspring drives the differences in birth intervals only when infant mortality is low. These results are relevant to understanding the demographic transition, because our model predicts that sibling competition becomes an important determinant of optimal interbirth intervals only when mortality is low, as in post-transition societies. We do not predict that these effects alone can select for menopause

    A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging

    Get PDF
    Deleterious mutations appearing in a population increase in frequency until stopped by natural selection. The ensuing equilibrium creates a stable frequency of deleterious mutations or the mutational load. Here I develop the comparable concept of a damage load, which is caused by harmful non-heritable changes to the phenotype. A damage load also ensues when the increase of damage is opposed by selection. The presence of a damage load favors the evolution of asymmetrical transmission of damage by a mother to her daughters. The asymmetry is beneficial because it increases fitness variance, but it also leads to aging or senescence. A mathematical model based on microbes reveals that a cell lineage dividing symmetrically is immortal if lifetime damage rates do not exceed a threshold. The evolution of asymmetry allows the lineage to persist above the threshold, but the lineage becomes mortal. In microbes with low genomic mutation rates, it is likely that the damage load is much greater than the mutational load. In metazoans with higher genomic mutation rates, the damage and the mutational load could be of the same magnitude. A fit of the model to experimental data shows that Escherichia coli cells experience a damage rate that is below the threshold and are immortal under the conditions examined. The model estimates the asymmetry level of E. coli to be low but sufficient for persisting at higher damage rates. The model also predicts that increasing asymmetry results in diminishing fitness returns, which may explain why the bacterium has not evolved higher asymmetry

    A Decline in New HIV Infections in South Africa: Estimating HIV Incidence from Three National HIV Surveys in 2002, 2005 and 2008

    Get PDF
    Three national HIV household surveys were conducted in South Africa, in 2002, 2005 and 2008. A novelty of the 2008 survey was the addition of serological testing to ascertain antiretroviral treatment (ART) use.We used a validated mathematical method to estimate the rate of new HIV infections (HIV incidence) in South Africa using nationally representative HIV prevalence data collected in 2002, 2005 and 2008. The observed HIV prevalence levels in 2008 were adjusted for the effect of antiretroviral treatment on survival. The estimated "excess" HIV prevalence due to ART in 2008 was highest among women 25 years and older and among men 30 years and older. In the period 2002-2005, the HIV incidence rate among men and women aged 15-49 years was estimated to be 2.0 new infections each year per 100 susceptible individuals (/100pyar) (uncertainty range: 1.2-3.0/100pyar). The highest incidence rate was among 15-24 year-old women, at 5.5/100pyar (4.5-6.5). In the period 2005-2008, incidence among men and women aged 15-49 was estimated to be 1.3/100 (0.6-2.5/100pyar), although the change from 2002-2005 was not statistically significant. However, the incidence rate among young women aged 15-24 declined by 60% in the same period, to 2.2/100pyar, and this change was statistically significant. There is evidence from the surveys of significant increases in condom use and awareness of HIV status, especially among youth.Our analysis demonstrates how serial measures of HIV prevalence obtained in population-based surveys can be used to estimate national HIV incidence rates. We also show the need to determine the impact of ART on observed HIV prevalence levels. The estimation of HIV incidence and ART exposure is crucial to disentangle the concurrent impact of prevention and treatment programs on HIV prevalence

    Dried blood spots as a source of anti-malarial antibodies for epidemiological studies

    Get PDF
    BACKGROUND: Blood spots collected onto filter paper are an established and convenient source of antibodies for serological diagnosis and epidemiological surveys. Although recommendations for the storage and analysis of small molecule analytes in blood spots exist, there are no published systematic studies of the stability of antibodies under different storage conditions. METHODS: Blood spots, on filter paper or glass fibre mats and containing malaria-endemic plasma, were desiccated and stored at various temperatures for different times. Eluates of these spots were assayed for antibodies against two Plasmodium falciparum antigens, MSP-119 and MSP2, and calculated titres used to fit an exponential (first order kinetic) decay model. The first order rate constants (k) for each spot storage temperature were used to fit an Arrhenius equation, in order to estimate the thermal and temporal stability of antibodies in dried blood spots. The utility of blood spots for serological assays was confirmed by comparing antibodies eluted from blood spots with the equivalent plasma values in a series of samples from North Eastern Tanzania and by using blood spot-derived antibodies to estimate malaria transmission intensity in this site and for two localities in Uganda. RESULTS: Antibodies in spots on filter paper and glass fibre paper had similar stabilities but blood was more easily absorbed onto filter papers than glass fibre, spots were more regular and spot size was more closely correlated with blood volume for filter paper spots. Desiccated spots could be stored at or below 4 degrees C for extended periods, but were stable for only very limited periods at ambient temperature. When desiccated, recoveries of antibodies that are predominantly of IgG1 or IgG3 subclasses were similar. Recoveries of antibodies from paired samples of serum and of blood spots from Tanzania which had been suitably stored showed similar recoveries of antibodies, but spots which had been stored for extended periods at ambient humidity and temperature showed severe loss of recoveries. Estimates of malaria transmission intensity obtained from serum and from blood spots were similar, and values obtained using blood spots agreed well with entomologically determined values. CONCLUSION: This study has demonstrated the suitability of filter paper blood spots paper for collection of serum antibodies, and provided clear guidelines for the treatment and storage of filter papers which emphasize the importance of desiccation and minimisation of time spent at ambient temperatures. A recommended protocol for collecting, storing and assaying blood spots is provided

    Variable Pathogenicity Determines Individual Lifespan in Caenorhabditis elegans

    Get PDF
    A common property of aging in all animals is that chronologically and genetically identical individuals age at different rates. To unveil mechanisms that influence aging variability, we identified markers of remaining lifespan for Caenorhabditis elegans. In transgenic lines, we expressed fluorescent reporter constructs from promoters of C. elegans genes whose expression change with age. The expression levels of aging markers in individual worms from a young synchronous population correlated with their remaining lifespan. We identified eight aging markers, with the superoxide dismutase gene sod-3 expression being the best single predictor of remaining lifespan. Correlation with remaining lifespan became stronger if expression from two aging markers was monitored simultaneously, accounting for up to 49% of the variation in individual lifespan. Visualizing the physiological age of chronologically-identical individuals allowed us to show that a major source of lifespan variability is different pathogenicity from individual to individual and that the mechanism involves variable activation of the insulin-signaling pathway

    Ageing of enteric neurons: oxidative stress, neurotrophic factors and antioxidant enzymes

    Get PDF
    Background: Ageing is associated with gastrointestinal dysfunction, which can have a major impact on quality of life of the elderly. A number of changes in the innervation of the gut during ageing have been reported, including neuronal loss and degenerative changes. Evidence indicates that reactive oxygen species (ROS) are elevated in ageing enteric neurons, but that neurotrophic factors may reduce generation of neuronal ROS. Two such factors, glial cell line derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) have also been found to protect enteric neurons against oxidative stress induced cell death of enteric ganglion cells in vitro. We have investigated the possible roles of neurotrophic factors further, by examining their expression in the gut during ageing, and by analysing their effects on antioxidant enzyme production in cultures of enteric ganglion cells. Results: Analysis of the expression of GDNF and its receptors c-Ret and GFR Ξ± βˆ’ 1 in rat gut by RT-PCR showed that expression continues throughout life and into ageing, in both ad libitum(AL) and calorically-restricted (CR) animals. Levels of expression of GDNF and GFR Ξ± βˆ’ 1 were elevated in 24 month AL animals compared to 24 month CR animals, and to 24 CR and 6 month control animals respectively. The related factor Neurturin and its receptor GFR Ξ± βˆ’ 2 were also expressed throughout life, the levels of the GFR – Ξ±-2(b) isoform were reduced in 24 m AL animals. Immunolabelling showed that c-Ret and GFR Ξ± βˆ’ 1 proteins were expressed by myenteric neurons in ageing animals. GDNF, but not NT-3, was found to increase expression of Cu/Zn superoxide dismutase and catalase by cultured enteric ganglion cells. Conclusions: The neurotrophic factors GDNF and neurturin and their receptors continue to be expressed in the ageing gut. Changes in the levels of expression of GDNF , GFR Ξ±-1 and GFR Ξ±-2(b) isoform occurred in 24 m AL animals. GDNF, but not NT-3, increased the levels of antioxidant enzymes in cultured enteric ganglion cells, indicating a possible mechanism for the reported protective effect of GDNF against menadione-induced neuronal apoptosis in the ageing gut. Together these data suggest that GDNF family members may play a protective role in the gut throughout life, and support the suggestion that dysregulation of neurotrophic factor support could contribute to neuronal ageing in the gut

    Age-related impairment of mesenchymal progenitor cell function

    Get PDF
    In most mesenchymal tissues a subcompartment of multipotent progenitor cells is responsible for the maintenance and repair of the tissue following trauma. With increasing age, the ability of tissues to repair themselves is diminished, which may be due to reduced functional capacity of the progenitor cells. The purpose of this study was to investigate the effect of aging on rat mesenchymal progenitor cells. Mesenchymal progenitor cells were isolated from Wistar rats aged 3, 7, 12 and 56 weeks. Viability, capacity for differentiation and cellular aging were examined. Cells from the oldest group accumulated raised levels of oxidized proteins and lipids and showed decreased levels of antioxidative enzyme activity. This was reflected in decreased fibroblast colony-forming unit (CFU-f) numbers, increased levels of apoptosis and reduced proliferation and potential for differentiation. These data suggest that the reduced ability to maintain mesenchymal tissue homeostasis in aged mammals is not purely due to a decline in progenitor cells numbers but also to a loss of progenitor functionality due to the accumulation of oxidative damage, which may in turn be a causative factor in a number of age-related pathologies such as arthritis, tendinosis and osteoporosis. Β© 2006 The Authors Journal compilation Β© Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland 2006

    Phenotypic covariance of longevity, immunity and stress resistance in the Caenorhabditis nematodes

    Get PDF
    Background \ud Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin– like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four \ud Caenorhabditis species. \ud \ud Methodology/Principal Findings \ud We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged \ud significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. \ud \ud Conclusions \ud The gonochoristic species display a significantly longer lifespan (p < 0.0001)and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants
    • …
    corecore