212 research outputs found

    The modification of surfaces : from fundamentals to applications

    Get PDF
    You’re surrounded by surfaces. Viewed from a macro perspective they might appear soft, brightly colored, or textured. Maybe you don’t think anything of them at all. But what happens when we take a closer look? Here, down at the nanoscale, chemical reactions at surfaces play a hugely important role in the world in which we live. Whether it’s preventing metal corrosion, or developing the latest fuel cell, the state of surface being investigated is crucial. Indeed, by intentionally modifying surfaces we can introduce desirable properties, all because we’re controlling what goes on at the molecular level. The first part of this thesis discusses the use of model surfaces to probe fundamental properties and processes. Firstly, model surfaces displaying well-defined chemical functionality are created using self-assembled monolayers (SAMs), and are subsequently used as a means to understand the primary interactions that occur between carbonaceous soot contaminants, and surfactant-like molecules in engine oils. The quartz-crystal microbalance (QCM) is employed as a means to determine minute levels of surface adsorption, and a structure-activity relationship for these molecules is suggested. Next, a new approach for profiling the activity of molecular adsorbates at carbon surfaces is introduced, which allows for the impact of individual surface features on resulting electrochemical activity to be determined. It is used to study the case of quinone adsorption at graphite electrodes, a currently debated topic, and it is revealed that current literature models regarding the activity of the basal surface need revision, with significant implications for carbon electrochemistry as a whole. The second part of this thesis turns to understanding and controlling surface modification processes. Through a range of complementary techniques, the ability of scanning electrochemical cell microscopy (SECCM) to control the extent of the aryl diazonium grafting process at sp2 carbon surfaces is demonstrated. Aryl diazonium chemistry as been identified as a route to band-gap generation in graphene electronics, and as such, controlled routes to localized surface modification are of great interest. Next, the versatility of SECCM for controlled surface modification is further demonstrated, where it is used as a method to draw intricate patterns of defined surface chemistry in graphene, with a strong focus on the production of integrated graphene circuits, a prospect often promised. Finally, a new methodology for the transfer of graphene synthesized via chemical vapor deposition (CVD) is introduced. Crucially, it yields graphene surfaces with distinctly low levels of contamination, an area that currently poses a problem in graphene research

    Intravascular ultrasound, performed during resuscitative endovascular balloon occlusion of the aorta (REBOA), confirms correct balloon deployment and haemostasis - a potential solution for remote, austere and military settings.

    Get PDF
    Introduction Resuscitative endovascular balloon occlusion of the aorta (REBOA) is rapidly evolving as an emergency haemorrhage control technique. It has wide potential applicability in remote and austere settings, and following military trauma where prolonged field care might be required. However, rapid confirmation of balloon delivery is a challenge which relies on estimates derived from anatomical measurements or trans-abdominal ultrasound. In addition, confirmation of adequate balloon expansion is difficult. Intravascular ultrasound (IVUS) offers a solution to these two issues, making REBOA a deliverable therapy in the pre-hospital and early hospital settings.Publisher PDFPeer reviewe

    Molecular functionalization of graphite surfaces : Basal Plane versus Step Edge electrochemical activity

    Get PDF
    The chemical functionalization of carbon surfaces has myriad applications, from tailored sensors to electrocatalysts. Here, the adsorption and electrochemistry of anthraquinone-2,6-disulfonate (AQDS) is studied on highly oriented pyrolytic graphite (HOPG) as a model sp2 surface. A major focus is to elucidate whether adsorbed electroactive AQDS can be used as a marker of step edges, which have generally been regarded as the main electroactive sites on graphite electrode surfaces. First, the macroscopic electrochemistry of AQDS is studied on a range of surfaces differing in step edge density by more than 2 orders of magnitude, complemented with ex situ tapping mode atomic force microscopy (AFM) data. These measurements show that step edges have little effect on the extent of adsorbed electroactive AQDS. Second, a new fast scan cyclic voltammetry protocol carried out with scanning electrochemical cell microscopy (SECCM) enables the evolution of AQDS adsorption to be followed locally on a rapid time scale. Subsequent AFM imaging of the areas probed by SECCM allows a direct correlation of the electroactive adsorption coverage and the actual step edge density of the entire working area. The amount of adsorbed electroactive AQDS and the electron transfer kinetics are independent of the step edge coverage. Last, SECCM reactive patterning is carried out with complementary AFM measurements to probe the diffusional electroactivity of AQDS. There is essentially uniform and high activity across the basal surface of HOPG. This work provides new methodology to monitor adsorption processes at surfaces and shows unambiguously that there is no correlation between the step edge density of graphite surfaces and the observed coverage of electroactive AQDS. The electroactivity is dominated by the basal surface, and studies that have used AQDS as a marker of steps need to be revised

    2016 Laboratory guidelines for postvasectomy semen analysis: Association of Biomedical Andrologists, the British Andrology Society and the British Association of Urological Surgeons

    Get PDF
    Post-vasectomy semen analysis (PVSA) is the procedure used to establish whether sperm are present in the semen following a vasectomy. PVSA is presently carried out by a wide variety of individuals, ranging from doctors and nurses in general practitioner (GP) surgeries to specialist scientists in andrology laboratories, with highly variable results.Key recommendations are that: (1) PVSA should take place a minimum of 12 weeks after surgery and after a minimum of 20 ejaculations. (2) Laboratories should routinely examine samples within 4 h of production if assessing for the presence of sperm. If non-motile sperm are observed, further samples must be examined within 1 h of production. (3) Assessment of a single sample is acceptable to confirm vasectomy success if all recommendations and laboratory methodology are met and no sperm are observed. Clearance can then be given. (4) The level for special clearance should be &lt;100 000/mL non-motile sperm. Special clearance cannot be provided if any motile sperm are observed and should only be given after assessment of two samples in full accordance with the methods contained within these guidelines. Surgeons are responsible both preoperatively and postoperatively for the counselling of patients and their partners regarding complications and the possibility of late recanalisation after clearance. These 2016 guidelines replace the 2002 British Andrology Society (BAS) laboratory guidelines and should be regarded as definitive for the UK in the provision of a quality PVSA service, accredited to ISO 15189:2012, as overseen by the United Kingdom Accreditation Service (UKAS).</jats:p

    Improved redshifts for SDSS quasar spectra

    Full text link
    A systematic investigation of the relationship between different redshift estimation schemes for more than 91000 quasars in the Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6) is presented. The publicly available SDSS quasar redshifts are shown to possess systematic biases of Dz/(1+z)>=0.002 (600km/s) over both small (dz~0.1) and large (dz~1) redshift intervals. Empirical relationships between redshifts based on i) CaII H & K host galaxy absorption, ii) quasar [OII] 3728, iii) [OIII] 4960,5008 emission, and iv) cross-correlation (with a master quasar template) that includes, at increasing quasar redshift, the prominent MgII 2799, CIII] 1908 and CIV 1549 emission lines, are established as a function of quasar redshift and luminosity. New redshifts in the resulting catalogue possess systematic biases a factor of ~20 lower compared to the SDSS redshift values; systematic effects are reduced to the level of Dz/(1+z)<10^-4 (30km/s) per unit redshift, or <2.5x10^-5 per unit absolute magnitude. Redshift errors, including components due both to internal reproducibility and the intrinsic quasar-to-quasar variation among the population, are available for all quasars in the catalogue. The improved redshifts and their associated errors have wide applicability in areas such as quasar absorption outflows, quasar clustering, quasar-galaxy clustering and proximity-effect determinations.Comment: Accepted to MNRAS. The QSO redshift catalogue and QSO template spectrum can be downloaded from ftp://ftp.ast.cam.ac.uk/pub/phewett/ until 1st May 201

    Adsorption of the prototypical organic corrosion inhibitor benzotriazole on the Cu(100) surface

    Get PDF
    M.T. gratefully acknowledges financial support from Lubrizol Limited and thanks the Engineering and Physical Sciences Research Council (EPSRC) grant EP/L015307/1 for the Molecular Analytical Science Centre for Doctoral Training (MAS-CDT). C.G. acknowledges the use of the Euler cluster at ETH Zurich for the DFT calculations. F.G. acknowledges funding from the EPSRC (grant EP/S027270/1).The interaction of benzotriazole (BTAH) with Cu(100) has been studied as a function of BTAH exposure in a joint experimental and theoretical effort. Scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS), high resolution electron energy loss spectroscopy (HREELS) and density functional theory (DFT) calculations have been combined to elucidate the structural and chemical characteristics of this system. BTAH is found to deprotonate upon adsorption on the copper surface and to adopt an orientation that depends on the molecular coverage. Benzotriazolate (BTA) species initially lie with their planes parallel to the substrate but, at a higher molecular coverage, a transition occurs to an upright adsorption geometry. Upon increasing the BTAH exposure, different phases of vertically aligned BTAs are observed with increasing molecular densities until a final, self-limiting monolayer is developed. Both theory and experiment agree in identifying CuBTA and Cu(BTA)2 metal-organic complexes as the fundamental building blocks of this monolayer. This work shows several similarities with the results of previous studies on the interaction of benzotriazole with other low Miller index copper surfaces, thereby ideally completing and concluding them. The overall emerging picture constitutes an important starting point for understanding the mechanism for protection of copper from corrosion.Publisher PDFPeer reviewe

    THE IMPACT OF TEAM EMPOWERMENT ON VIRTUAL TEAM PERFORMANCE: THE MODERATING ROLE OF FACE-TO-FACE INTERACTION.

    Get PDF
    We investigated the relationship between team empowerment and virtual team performance and the moderating role of the extent of face-to-face interaction using 35 sales and service virtual teams in a high-technology organization. Team empowerment was positively related to two independent assessments of virtual team performance--process improvement and customer satisfaction. Further, the number of face-to-face meetings moderated the relationship between team empowerment and process improvement: team empowerment was a stronger predictor for teams that met face-to-face less, rather than more, frequently

    Understanding the interaction of organic corrosion inhibitors with copper at the molecular scale : benzotriazole on Cu(110)

    Get PDF
    M.T. gratefully acknowledges financial support from Lubrizol Limited and, together with J.E., thank the Engineering and Physical Sciences Research Council (EPSRC) grant EP/L015307/1 for the Molecular Analytical Science Centre for Doctoral Training (MAS-CDT). C.G acknowledges the Euler cluster managed by the HPC team at ETH Zurich for computational resources and is grateful for computational support from the UK national high performance computing service, ARCHER, for which access was obtained via the UKCP consortium and funded by EPSRC grant EP/P022561/1.Benzotriazole (BTAH) has been used for several industrial applications, but most commonly as a corrosion inhibitor for copper, since the 1950s. However, the mechanism of its interaction with copper surfaces at the atomistic scale is still a matter of debate. Here, the adsorption of BTAH onto a clean Cu(110) surface has been investigated by a combination of scanning tunnelling microscopy, X-ray photoelectron spectroscopy, high resolution electron energy loss spectroscopy and density functional theory calculations. Different supramolecular structures have been observed depending on molecular coverage and annealing. In the low coverage regime, flat lying deprotonated species are formed which give way to benzotriazolate molecules in an upright configuration by increasing the BTAH exposure. The ensuing monolayer is self-limiting but, upon annealing above 150 °C, transforms into a highly ordered nano-ridge structure resulting from a significant in-plane and out-of-plane reconstruction of the surface. All structures are characterised by a strong molecule-substrate interaction and the high coverage phases are dominated by the formation of metal-organic complexes between copper adatoms and benzotriazolate species. These findings shed light on the nature and strength of the interaction occurring between BTAH and copper which lies at the basis of the effectiveness of this prototypical corrosion inhibitor.PostprintPeer reviewe

    Overlap in utilization of juvenile Cape Horse Mackerel by Cape Fur Seals and the purse-seine fishery in Namibia

    Get PDF
    The Cape horse mackerel Trachurus trachurus capensisis one of Namibia's most valuable fish stocks, and an important component to the diet of Cape fur seals, Arctocephalus pusillus pusillus, off northern Namibia. The level of overlap in the utilization of this resource between seals and the purse-seine fishery was investigated using two overlap indices. For high overlap measures, seals and the purse-seine fishery utilized age-2 horse mackerel. For low overlap measures, seals mainly consumed age-0 fish whereas the fishery caught age-2 fish. Both indices were adjusted by the proportion of horse mackerel in the seal diet, with the assumption that the proportion consumed by the seals reflects the abundance of horse mackerel in the coastal waters of Cape Cross, Namibia. Both unadjusted and adjusted overlap indices showed that overlap between seals and the fishery in their utilization of juvenile horse mackerel was high only at times when horse mackerel abundance was high, and low when abundance was small. Confidence intervals and significance testing were included. Overall, there was little overlap between seals and the purse-seine fishery. This study provides important information that should be taken into account in the management of the horse mackerel resource

    Screening the surface structure-dependent action of a benzotriazole derivative on copper electrochemistry in a triple-phase nanoscale environment

    Get PDF
    Copper (Cu) corrosion is a compelling problem in the automotive sector and in oil refinery and transport, where it is mainly caused by the action of acidic aqueous droplets dispersed in an oil phase. Corrosion inhibitors, such as benzotriazole (BTAH) and its derivatives, are widely used to limit such corrosion processes. The efficacy of corrosion inhibitors is expected to be dependent on the surface crystallography of metals exposed to the corrosion environment. Yet, studies of the effect of additives at the local level of the surface crystallographic structure of polycrystalline metals are challenging, particularly lacking for the triple-phase corrosion problem (metal/aqueous/oil). To address this issue, scanning electrochemical cell microscopy (SECCM), is used in an acidic nanodroplet meniscus|oil layer|polycrystalline Cu configuration to explore the grain-dependent influence of an oil soluble BTAH derivative (BTA-R) on Cu electrochemistry within the confines of a local aqueous nanoprobe. Electrochemical maps, collected in the voltammetric mode at an array of >1000 points across the Cu surface, reveal both cathodic (mainly the oxygen reduction reaction) and anodic (Cu electrooxidation) processes, of relevance to corrosion, as a function of the local crystallographic structure, deduced with co-located electron backscatter diffraction (EBSD). BTA-R is active on the whole spectrum of crystallographic orientations analyzed, but there is a complex grain-dependent action, distinct for oxygen reduction and Cu oxidation. The methodology pinpoints the surface structural motifs that facilitate corrosion-related processes and where BTA-R works most efficiently. Combined SECCM–EBSD provides a detailed screen of a spectrum of surface sites, and the results should inform future modeling studies, ultimately contributing to a better inhibitor design
    • …
    corecore