262 research outputs found

    Host And Geography Together Drive Early Adaptive Radiation Of Hawaiian Planthoppers

    Get PDF
    The interactions between insects and their plant host have been implicated in driving diversification of both players. Early arguments highlighted the role of ecological opportunity, with the idea that insects escape and radiate on new hosts, with subsequent hypotheses focusing on the interplay between host shifting and host tracking, coupled with isolation and fusion, in generating diversity. Because it is rarely possible to capture the initial stages of diversification, it is particularly difficult to ascertain the relative roles of geographic isolation versus host shifts in initiating the process. The current study examines genetic diversity between populations and hosts within a single species of endemic Hawaiian planthopper, Nesosydne umbratica (Hemiptera, Delphacidae). Given that the species was known as a host generalist occupying unrelated hosts, Clermontia (Campanulaceae) and Pipturus (Urticaceae), we set out to determine the relative importance of geography and host in structuring populations in the early stages of differentiation on the youngest islands of the Hawaiian chain. Results from extensive exon capture data showed that N. umbratica is highly structured, both by geography, with discrete populations on each volcano, and by host plant, with parallel radiations on Clermontia and Pipturus leading to extensive co-occurrence. The marked genetic structure suggests that populations can readily become established on novel hosts provided opportunity; subsequent adaptation allows monopolization of the new host. The results support the role of geographic isolation in structuring populations and with host shifts occurring as discrete events that facilitate subsequent parallel geographic range expansion

    Previous heat treatment inducing different plasma nitriding behaviors in martensitic stainless steel

    Get PDF
    In this work we report a study of the induced changes in structure and corrosion behavior of martensitic stainless steels nitrided by plasma immersion ion implantation (PI3) at different previous heat treatments. The samples were characterized by x-ray diffraction and glancing angle x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and potentiodynamic measurements. Depending on the proportion of retained austenite in the unimplanted material, different phase transformations are obtained at lower and intermediate temperatures of nitrogen implantation. At higher temperatures, the great mobility of the chromium yields CrN segregations like spots in random distribution, and the alpha'-martensite is degraded to alpha-Fe (ferrite). The nitrided layer thickness follows a fairly linear relationship with the temperature and a parabolic law with the process time. The corrosion resistance depends strongly on chromium segregation from the martensitic matrix, as a result of the formation of CrN during the nitrogen implantation process and the formation of CrxC during the heat treatment process. Briefly speaking, the best results are obtained using low tempering temperature and low implantation temperature (below 375 degrees) due to the increment of the corrosion resistance and nitrogen dissolution in the structure with not too high diffusion depths (about 5-10 mu m). (c) 2006 American Vacuum Society

    Time Dependence of Tip Morphology during Cellular/Dendritic Arrayed Growth

    Get PDF
    Succinonitrile-1.9 wt pct acetone has been directionally solidified in 0.7 X 0.7-cm-square cross section pyrex ampoules in order to observe the cell/dendrite tip morphologies, not influenced by the 'wall effects', which are present during growth in the generally used thin (about 200 gm) crucibles. The tips do not maintain a steady-state shape, as is generally assumed. Instead, they fluctuate within a shape envelope. The extent of fluctuation increases with decreasing growth speed, as the micro structure changes from the dendritic to cellular. The influence of natural convection has been examined by comparing these morphologies with those grown, without convection, in the thin ampoules

    A critical appraisal of appendage disparity and homology in fishes

    Full text link
    Fishes are both extremely diverse and morphologically disparate. Part of this disparity can be observed in the numerous possible fin configurations that may differ in terms of the number of fins as well as fin shapes, sizes and relative positions on the body. Here, we thoroughly review the major patterns of disparity in fin configurations for each major group of fishes and discuss how median and paired fin homologies have been interpreted over time. When taking into account the entire span of fish diversity, including both extant and fossil taxa, the disparity in fin morphologies greatly complicates inferring homologies for individual fins. Given the phylogenetic scope of this review, structural and topological criteria appear to be the most useful indicators of fin identity. We further suggest that it may be advantageous to consider some of these fin homologies as nested within the larger framework of homologous fin‐forming morphogenetic fields. We also discuss scenarios of appendage evolution and suggest that modularity may have played a key role in appendage disparification. Fin modules re‐expressed within the boundaries of fin‐forming fields could explain how some fins may have evolved numerous times independently in separate lineages (e.g., adipose fin), or how new fins may have evolved over time (e.g., anterior and posterior dorsal fins, pectoral and pelvic fins). We favour an evolutionary scenario whereby median appendages appeared from a unique field of competence first positioned throughout the dorsal and ventral midlines, which was then redeployed laterally leading to paired appendages.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151971/1/faf12402_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151971/2/faf12402.pd

    Lumbar segmental mobility disorders: comparison of two methods of defining abnormal displacement kinematics in a cohort of patients with non-specific mechanical low back pain

    Get PDF
    BACKGROUND: Lumbar segmental rigidity (LSR) and lumbar segmental instability (LSI) are believed to be associated with low back pain (LBP), and identification of these disorders is believed to be useful for directing intervention choices. Previous studies have focussed on lumbar segmental rotation and translation, but have used widely varying methodologies. Cut-off points for the diagnosis of LSR & LSI are largely arbitrary. Prevalence of these lumbar segmental mobility disorders (LSMDs) in a non-surgical, primary care LBP population has not been established. METHODS: A cohort of 138 consecutive patients with recurrent or chronic low back pain (RCLBP) were recruited in this prospective, pragmatic, multi-centre study. Consenting patients completed pain and disability rating instruments, and were referred for flexion-extension radiographs. Sagittal angular rotation and sagittal translation of each lumbar spinal motion segment was measured from the radiographs, and compared to a reference range derived from a study of 30 asymptomatic volunteers. In order to define reference intervals for normal motion, and define LSR and LSI, we approached the kinematic data using two different models. The first model used a conventional Gaussian definition, with motion beyond two standard deviations (2sd) from the reference mean at each segment considered diagnostic of rotational LSMD and translational LSMD. The second model used a novel normalised within-subjects approach, based on mean normalised contribution-to-total-lumbar-motion. An LSMD was then defined as present in any segment that contributed motion beyond 2sd from the reference mean contribution-to-normalised-total-lumbar-motion. We described reference intervals for normal segmental mobility, prevalence of LSMDs under each model, and the association of LSMDs with pain and disability. RESULTS: With the exception of the conventional Gaussian definition of rotational LSI, LSMDs were found in statistically significant prevalences in patients with RCLBP. Prevalences at both the segmental and patient level were generally higher using the normalised within-subjects model (2.8 to 16.8% of segments; 23.3 to 35.5% of individuals) compared to the conventional Gaussian model (0 to 15.8%; 4.7 to 19.6%). LSMDs are associated with presence of LBP, however LSMDs do not appear to be strongly associated with higher levels of pain or disability compared to other forms of non-specific LBP. CONCLUSION: LSMDs are a valid means of defining sub-groups within non-specific LBP, in a conservative care population of patients with RCLBP. Prevalence was higher using the normalised within-subjects contribution-to-total-lumbar-motion approach
    corecore