2,943 research outputs found
Participation in voluntary and community organisations in the United Kingdom and the influences on the self-management of long-term conditions
Voluntary and community organisations (VCOs) have health benefits for those who attend and are viewed as having the potential to support long-term condition management. However, existing community-level understandings of participation do not explain the involvement with VCOs at an individual level, or the nature of support, which may elicit health benefits. Framing active participation as ‘doing and experiencing’, the aim of this qualitative study was to explore why people with long-term vascular conditions join VCOs, maintain their membership and what prevents participation. Twenty participants, self-diagnosed as having diabetes, chronic heart disease or chronic kidney disease, were purposefully sampled and recruited from a range of VCOs in the North West of England identified from a mapping of local organisations. In semi-structured interviews, we explored the nature of their participation. Analysis was thematic and iterative involving a continual reflection on the data. People gave various reasons for joining groups. These included health and well-being, the need for social contact and pursuing a particular hobby. Barriers to participation included temporal and spatial barriers and those associated with group dynamics. Members maintained their membership on the basis of an identity and sense of belonging to the group, developing close relationships within it and the availability of support and trust. Participants joined community groups often in response to a health-related event. Our findings demonstrate the ways in which the social contact associated with continued participation in VCOs is seen as helping with long-term condition management. Interventions designed at improving chronic illness management might usefully consider the role of VCOs
Data visualisations : newsroom trends and everyday engagements
This chapter looks at both the production of data visualizations (henceforth “dataviz”) in newsrooms and audiences’ everyday engagements with dataviz, drawing on two separate research projects. The first is Seeing Data, which explored how people make sense of data visualizations, and the second is INDVIL, which explored dataviz as a semiotic, aesthetic and discursive resource in society. The chapter starts by summarizing the main findings of an INDVIL sub-project focusing on dataviz in the news, in which we found that dataviz are perceived in diverse ways and deployed for diverse purposes. It then summarizes our main findings from Seeing Data, where we also found great diversity, this time in how audiences make sense of dataviz. This diversity is important for the future work of both dataviz researchers and practitioners
Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study
Background: Human genetic factors are important determinants of malaria risk. We investigated associations between multiple candidate polymorphisms—many related to the structure or function of red blood cells—and risk for severe Plasmodium falciparum malaria and its specific phenotypes, including cerebral malaria, severe malaria anaemia, and respiratory distress. Methods: We did a case-control study in Kilifi County, Kenya. We recruited as cases children presenting with severe malaria to the high-dependency ward of Kilifi County Hospital. We included as controls infants born in the local community between Aug 1, 2006, and Sept 30, 2010, who were part of a genetics study. We tested for associations between a range of candidate malaria-protective genes and risk for severe malaria and its specific phenotypes. We used a permutation approach to account for multiple comparisons between polymorphisms and severe malaria. We judged p values less than 0·005 significant for the primary analysis of the association between candidate genes and severe malaria. Findings: Between June 11, 1995, and June 12, 2008, 2244 children with severe malaria were recruited to the study, and 3949 infants were included as controls. Overall, 263 (12%) of 2244 children with severe malaria died in hospital, including 196 (16%) of 1233 with cerebral malaria. We investigated 121 polymorphisms in 70 candidate severe malaria-associated genes. We found significant associations between risk for severe malaria overall and polymorphisms in 15 genes or locations, of which most were related to red blood cells: ABO, ATP2B4, ARL14, CD40LG, FREM3, INPP4B, G6PD, HBA (both HBA1 and HBA2), HBB, IL10, LPHN2 (also known as ADGRL2), LOC727982, RPS6KL1, CAND1, and GNAS. Combined, these genetic associations accounted for 5·2% of the variance in risk for developing severe malaria among individuals in the general population. We confirmed established associations between severe malaria and sickle-cell trait (odds ratio [OR] 0·15, 95% CI 0·11–0·20; p=2·61 × 10−58), blood group O (0·74, 0·66–0·82; p=6·26 × 10−8), and –α3·7-thalassaemia (0·83, 0·76–0·90; p=2·06 × 10−6). We also found strong associations between overall risk of severe malaria and polymorphisms in both ATP2B4 (OR 0·76, 95% CI 0·63–0·92; p=0·001) and FREM3 (0·64, 0·53–0·79; p=3·18 × 10−14). The association with FREM3 could be accounted for by linkage disequilibrium with a complex structural mutation within the glycophorin gene region (comprising GYPA, GYPB, and GYPE) that encodes for the rare Dantu blood group antigen. Heterozygosity for Dantu was associated with risk for severe malaria (OR 0·57, 95% CI 0·49–0·68; p=3·22 × 10−11), as was homozygosity (0·26, 0·11–0·62; p=0·002). Interpretation: Both ATP2B4 and the Dantu blood group antigen are associated with the structure and function of red blood cells. ATP2B4 codes for plasma membrane calcium-transporting ATPase 4 (the major calcium pump on red blood cells) and the glycophorins are ligands for parasites to invade red blood cells. Future work should aim at uncovering the mechanisms by which these polymorphisms can result in severe malaria protection and investigate the implications of these associations for wider health. Funding: Wellcome Trust, UK Medical Research Council, European Union, and Foundation for the National Institutes of Health as part of the Bill & Melinda Gates Grand Challenges in Global Health Initiative
New apparatus for DTA at 2000 bar: thermodynamic studies on Au, Ag, Al and HTSC oxides
A new DTA (Differential Thermal Analysis) device was designed and installed
in a Hot Isostatic Pressure (HIP) furnace in order to perform high-pressure
thermodynamic investigations up to 2 kbar and 1200C. Thermal analysis can be
carried out in inert or oxidising atmosphere up to p(O2) = 400 bar. The
calibration of the DTA apparatus under pressure was successfully performed
using the melting temperature (Tm) of pure metals (Au, Ag and Al) as standard
calibration references. The thermal properties of these metals have been
studied under pressure. The values of DV (volume variation between liquid and
solid at Tm), ROsm (density of the solid at Tm) and ALPHAm (linear thermal
expansion coefficient at Tm) have been extracted. A very good agreement was
found with the existing literature and new data were added. This HP-DTA
apparatus is very useful for studying the thermodynamics of those systems where
one or more volatile elements are present, such as high TC superconducting
oxides. DTA measurements have been performed on Bi,Pb(2223) tapes up to 2 kbar
under reduced oxygen partial pressure (p(O2) = 0.07 bar). The reaction leading
to the formation of the 2223 phase was found to occur at higher temperatures
when applying pressure: the reaction DTA peak shifted by 49C at 2 kbar compared
to the reaction at 1 bar. This temperature shift is due to the higher stability
of the Pb-rich precursor phases under pressure, as the high isostatic pressure
prevents Pb from evaporating.Comment: 6 figures, 3 tables, Thermodynamics, Thermal property, Bi-2223,
fundamental valu
BASIL: A Toolbox for Perfusion Quantification using Arterial Spin Labelling
Arterial Spin Labelling (ASL) MRI is now an established non-invasive method to quantify cerebral blood flow and is increasingly being used in a variety of neuroimaging applications. With standard ASL acquisition protocols widely available, there is a growing interest in advanced options that offer added quantitative precision and information about haemodynamics beyond perfusion. In this article we introduce the BASIL toolbox, a research tool for the analysis of ASL data included within the FMRIB Software Library (FSL) and explain its operation in a variety of typical use cases. BASIL is not offered as a clinical tool, and nor is this work intended to guide the clinical application of ASL. Built around a Bayesian model-based inference algorithm, the toolbox is designed to quantify perfusion and other haemodynamic measures, such as arterial transit times, from a variety of possible ASL input data, particularly exploiting the information available in more advanced multi-delay acquisitions. At its simplest, the BASIL toolbox offers a graphical user interface that provides the analysis options needed by most users; through command line tools, it offers more bespoke options for users needing customised analyses. As part of FSL, the toolbox exploits a range of complementary neuroimaging analysis tools so that ASL data can be easily integrated into neuroimaging studies and used alongside other modalities
The Internet for weight control in an obese sample: results of a randomised controlled trial
Rising levels of obesity coupled with the limited success of currently available weight control methods highlight the need for investigation of novel approaches to obesity treatment. This study aims to determine the effectiveness and cost-effectiveness of an Internet-based resource for obesity management
Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj
Nuclear shadowing is observed in the per-nucleon cross-sections of positive
muons on carbon, calcium and lead as compared to deuterium. The data were taken
by Fermilab experiment E665 using inelastically scattered muons of mean
incident momentum 470 GeV/c. Cross-section ratios are presented in the
kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are
consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj
decreases, the size of the shadowing effect, as well as its A dependence, are
found to approach the corresponding measurements in photoproduction.Comment: 22 pages, incl. 6 figures, to be published in Z. Phys.
Non-O ABO blood group genotypes differ in their associations with Plasmodium falciparum rosetting and severe malaria
Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that “double dose” non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than “single dose” heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity
Peripheral electrical nerve stimulation and rest-activity rhythm in Alzheimer's disease
Rest-activity rhythm disruption is a prominent clinical feature of Alzheimer's disease (AD). The origin of the altered rest-activity rhythm is believed to be degeneration of the suprachiasmatic nucleus (SCN). In accordance with the 'use it or lose it' hypothesis of Swaab [Neurobiol Aging 1991, 12: 317-324] stimulation of the SCN may prevent age-related loss of neurons and might reactivate nerve cells that are inactive but not lost. Previous studies with relatively small sample sizes have demonstrated positive effects of peripheral electrical nerve stimulation on the rest-activity rhythm in AD patients. The present randomized, placebo-controlled, parallel-group study was meant to replicate prior findings of electrical stimulation in AD in a substantially larger group of AD patients. The experimental group (n = 31) received peripheral electrical nerve stimulation and the placebo group (n = 31) received sham stimulation. Effects of the intervention on the rest-activity rhythm were assessed by using wrist-worn actigraphs. Near-significant findings on the rest-activity rhythm partially support the hypothesis that neuronal stimulation enhances the rest-activity rhythm in AD patients. Interestingly, post-hoc analyses revealed significant treatment effects in a group of patients who were not using acetylcholinesterase inhibitors concomitantly. We conclude that more research is needed before firm general conclusions about the effectiveness of electrical stimulation as a symptomatic treatment in AD can be drawn. In addition, the present post-hoc findings indicate that future studies on non-pharmacological interventions should take medication use into account
- …