13 research outputs found

    Draft Genome Sequence of Antarctic Methanogen Enriched from Dry Valley Permafrost

    Get PDF
    A genomic reconstruction belonging to the genus Methanosarcina was assembled from metagenomic data from a methane-producing enrichment of Antarctic permafrost. This is the first methanogen genome reported from permafrost of the Dry Valleys and can help shed light on future climate-affected methane dynamics

    A large interactive visual database of copy number variants discovered in taurine cattle

    Get PDF
    Background: Copy number variants (CNVs) contribute to genetic diversity and phenotypic variation. We aimed to discover CNVs in taurine cattle using a large collection of whole-genome sequences and to provide an interactive database of the identified CNV regions (CNVRs) that includes visualizations of sequence read alignments, CNV boundaries, and genome annotations. Results: CNVs were identified in each of 4 whole-genome sequencing datasets, which together represent >500 bulls from 17 breeds, using a popular multi-sample read-depth−based algorithm, cn.MOPS. Quality control and CNVR construction, performed dataset-wise to avoid batch effects, resulted in 26,223 CNVRs covering 107.75 unique Mb (4.05%) of the bovine genome. Hierarchical clustering of samples by CNVR genotypes indicated clear separation by breeds. An interactive HTML database was created that allows data filtering options, provides graphical and tabular data summaries including Hardy-Weinberg equilibrium tests on genotype proportions, and displays genes and quantitative trait loci at each CNVR. Notably, the database provides sequence read alignments at each CNVR genotype and the boundaries of constituent CNVs in individual samples. Besides numerous novel discoveries, we corroborated the genotypes reported for a CNVR at the KIT locus known to be associated with the piebald coat colour phenotype in Hereford and some Simmental cattle. Conclusions: We present a large comprehensive collection of taurine cattle CNVs in a novel interactive visual database that displays CNV boundaries, read depths, and genome features for individual CNVRs, thus providing users with a powerful means to explore and scrutinize CNVRs of interest more thoroughly

    Two metagenomes from late pleistocene northeast siberian permafrost

    No full text
    The present study reports metagenomic shotgun sequencing of microbial communities of two ancient permafrost horizons of the Russian Arctic. Results demonstrate a significant difference in microbial community structure of the analyzed samples in general and microorganisms of the methane cycle in particular

    Two metagenomes from late pleistocene northeast siberian permafrost

    No full text
    The present study reports metagenomic shotgun sequencing of microbial communities of two ancient permafrost horizons of the Russian Arctic. Results demonstrate a significant difference in microbial community structure of the analyzed samples in general and microorganisms of the methane cycle in particular

    Genomic evaluation of feed efficiency component traits in Duroc pigs using 80K, 650K and whole-genome sequence variants

    No full text
    Abstract Background Increasing marker density was proposed to have potential to improve the accuracy of genomic prediction for quantitative traits; whole-sequence data is expected to give the best accuracy of prediction, since all causal mutations that underlie a trait are expected to be included. However, in cattle and chicken, this assumption is not supported by empirical studies. Our objective was to compare the accuracy of genomic prediction of feed efficiency component traits in Duroc pigs using single nucleotide polymorphism (SNP) panels of 80K, imputed 650K, and whole-genome sequence variants using GBLUP, BayesB and BayesRC methods, with the ultimate purpose to determine the optimal method to increase genetic gain for feed efficiency in pigs. Results Phenotypes of average daily feed intake (ADFI), average daily gain (ADG), ultrasound backfat depth (FAT), and loin muscle depth (LMD) were available for 1363 Duroc boars from a commercial breeding program. Genotype imputation accuracies reached 92.1% from 80K to 650K and 85.6% from 650K to whole-genome sequence variants. Average accuracies across methods and marker densities of genomic prediction of ADFI, FAT, LMD and ADG were 0.40, 0.65, 0.30 and 0.15, respectively. For ADFI and FAT, BayesB outperformed GBLUP, but increasing marker density had little advantage for genomic prediction. For ADG and LMD, GBLUP outperformed BayesB, while BayesRC based on whole-genome sequence data gave the best accuracies and reached up to 0.35 for LMD and 0.25 for ADG. Conclusions Use of genomic information was beneficial for prediction of ADFI and FAT but not for that of ADG and LMD compared to pedigree-based estimates. BayesB based on 80K SNPs gave the best genomic prediction accuracy for ADFI and FAT, while BayesRC based on whole-genome sequence data performed best for ADG and LMD. We suggest that these differences between traits in the effect of marker density and method on accuracy of genomic prediction are mainly due to the underlying genetic architecture of the traits

    Metagenomic analyses of the late Pleistocene permafrost – additional tools for reconstruction of environmental conditions

    No full text
    A comparative analysis of the metagenomes from two 30 000-year-old permafrost samples, one of lake-alluvial origin and the other from late Pleistocene Ice Complex sediments, revealed significant differences within microbial communities. The late Pleistocene Ice Complex sediments (which have been characterized by the absence of methane with lower values of redox potential and Fe2+ content) showed a low abundance of methanogenic archaea and enzymes from both the carbon and nitrogen cycles, but a higher abundance of enzymes associated with the sulfur cycle. The metagenomic and geochemical analyses described in the paper provide evidence that the formation of the sampled late Pleistocene Ice Complex sediments likely took place under much more aerobic conditions than lake-alluvial sediments.This work was supported by grants from the Russian Scientific Fund (14-14-01115) to Elizaveta Rivkina; from the National Science Foundation (DEB-1442262) to Tatiana Vishnivetskaya; and from the HHMI International Early Career Scientist Program (55007424), the EMBO Young Investigator Programme, MINECO (BFU2012-31329 and Sev-2012-0208), and the AGAUR program (2014 SGR 0974) to Fyodor Kondrashov. Support from the Russian Scientific Fund (14-14-01115) was allocated for sample collection, gDNA isolation, and analysis of metagenomic data

    High confidence copy number variants identified in Holstein dairy cattle from whole genome sequence and genotype array data

    Get PDF
    Multiple methods to detect copy number variants (CNV) relying on different types of data have been developed and CNV have been shown to have an impact on phenotypes of numerous traits of economic importance in cattle, such as reproduction and immunity. Further improvements in CNV detection are still needed in regard to the trade-off between high-true and low-false positive variant identification rates. Instead of improving single CNV detection methods, variants can be identified in silico with high confidence when multiple methods and datasets are combined. Here, CNV were identified from whole-genome sequences (WGS) and genotype array (GEN) data on 96 Holstein animals. After CNV detection, two sets of high confidence CNV regions (CNVR) were created that contained variants found in both WGS and GEN data following an animal-based (n = 52) and a population-based (n = 36) pipeline. Furthermore, the change in false positive CNV identification rates using different GEN marker densities was evaluated. The population-based approach characterized CNVR, which were more often shared among animals (average 40% more samples per CNVR) and were more often linked to putative functions (48 vs 56% of CNVR) than CNV identified with the animal-based approach. Moreover, false positive identification rates up to 22% were estimated on GEN information. Further research using larger datasets should use a population-wide approach to identify high confidence CNVR

    Metagenomics-Guided Survey, Isolation, and Characterization of Uranium Resistant Microbiota from the Savannah River Site, USA

    No full text
    Despite the recent advancements in culturomics, isolation of the majority of environmental microbiota performing critical ecosystem services, such as bioremediation of contaminants, remains elusive. Towards this end, we conducted a metagenomics-guided comparative assessment of soil microbial diversity and functions present in uraniferous soils relative to those that grew in diffusion chambers (DC) or microbial traps (MT), followed by isolation of uranium (U) resistant microbiota. Shotgun metagenomic analysis performed on the soils used to establish the DC/MT chambers revealed Proteobacterial phyla and Burkholderia genus to be the most abundant among bacteria. The chamber-associated growth conditions further increased their abundances relative to the soils. Ascomycota was the most abundant fungal phylum in the chambers relative to the soils, with Penicillium as the most dominant genus. Metagenomics-based taxonomic findings completely mirrored the taxonomic composition of the retrieved isolates such that the U-resistant bacteria and fungi mainly belonged to Burkholderia and Penicillium species, thus confirming that the chambers facilitated proliferation and subsequent isolation of specific microbiota with environmentally relevant functions. Furthermore, shotgun metagenomic analysis also revealed that the gene classes for carbohydrate metabolism, virulence, and respiration predominated with functions related to stress response, membrane transport, and metabolism of aromatic compounds were also identified, albeit at lower levels. Of major note was the successful isolation of a potentially novel Penicillium species using the MT approach, as evidenced by whole genome sequence analysis and comparative genomic analysis, thus enhancing our overall understanding on the uranium cycling microbiota within the tested uraniferous soils

    MOESM2 of Genomic evaluation of feed efficiency component traits in Duroc pigs using 80K, 650K and whole-genome sequence variants

    No full text
    Additional file 2: Table S1. Variance component and heritability estimates using different information. The data provided presented the genetic variance, total phenotypic variance and estimated heritability for the traits using different information and methods
    corecore