
1Scientific RepoRtS |         (2020) 10:8044  | https://doi.org/10.1038/s41598-020-64680-3

www.nature.com/scientificreports

High confidence copy number 
variants identified in Holstein 
dairy cattle from whole genome 
sequence and genotype array data
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Arun Kommadath  2,3, Kirill Krivushin2, Jason R. Grant2, Irene M. Häfliger  4, 
Cord Drögemüller  4, Angela cánovas  1, Paul Stothard2 & Christine F. Baes  1,4✉

Multiple methods to detect copy number variants (CNV) relying on different types of data have been 
developed and CNV have been shown to have an impact on phenotypes of numerous traits of economic 
importance in cattle, such as reproduction and immunity. Further improvements in CNV detection are 
still needed in regard to the trade-off between high-true and low-false positive variant identification 
rates. Instead of improving single CNV detection methods, variants can be identified in silico with 
high confidence when multiple methods and datasets are combined. Here, CNV were identified from 
whole-genome sequences (WGS) and genotype array (GEN) data on 96 Holstein animals. After CNV 
detection, two sets of high confidence CNV regions (CNVR) were created that contained variants 
found in both WGS and GEN data following an animal-based (n = 52) and a population-based (n = 36) 
pipeline. Furthermore, the change in false positive CNV identification rates using different GEN marker 
densities was evaluated. The population-based approach characterized CNVR, which were more often 
shared among animals (average 40% more samples per CNVR) and were more often linked to putative 
functions (48 vs 56% of CNVR) than CNV identified with the animal-based approach. Moreover, false 
positive identification rates up to 22% were estimated on GEN information. Further research using 
larger datasets should use a population-wide approach to identify high confidence CNVR.

Dairy cattle genetics has made great advances since the effects of single nucleotide polymorphisms (SNP) have 
been recognized on a wide range of mono or polygenic traits economically important for the dairy industry1–5. 
Genomic variation, however, is not only caused by SNP. Recent studies have shown that structural variants (SV) 
also have an important impact on phenotypes of a multitude of traits, such as milk production, reproduction, 
health, and feed efficiency6–8. Types of SV include translocations, inversions and copy number variation9. Copy 
number variants (CNV) form the most common class of SV in the human, plant and animal genome and can 
be identified as two types of event: copy number loss (CNL) or copy number gain (CNG). As the amount of 
DNA changes between samples with or without multiple copies of a segment, CNV are a type of the unbalanced 
structural variations9. Although the number of bovine CNV described in the literature is lower than the num-
ber of SNP, the fact that they have multiple alleles makes them highly informative10. The CNV can affect both 
monogenic traits, such as the coat color of cattle11, and polygenic traits such as feed efficiency, production traits, 
and reproduction traits of cattle12,13. For instance, a study by Liu et al.14 showed associations between CNV and 
production traits specifically in Holstein dairy cattle.

Identifying CNV is challenging and no consensus on the best method of identification has been reached 
because multiple factors, starting with the source of information on which the CNV are identified, influence the 
results. Moreover, most CNV identification methods were developed around the trade-off between high rates of 
discovery and low false positive rates. CNV have been identified in cattle from SNP genotyping arrays (GEN)15–21, 
hybridization arrays (ACGH)14,22–25, and whole-genome sequences (WGS)26–31. The degree of resolution of the 
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different platforms leads to the identification of different CNV with varying lengths distributed unequally in the 
genome. Although the first studies defined CNV as genomic segments of 1 kilobase (Kb)32 or more, the latest 
developments in their identification on whole-genome sequences have reduced the minimum size of interest 
to 50 base pairs (bp)33. Generally, variants longer than 5 megabases (Mb) are considered erroneous and thus 
removed13. Variants detected with different methods, on different animals, and relying on different sources of 
information may overlap between 0 and 90 percent12,26,34–37. Moreover, Kommadath et al.31 suggested the method 
used for CNV identification has the most impact on the overlap between studies. The advantages and disadvan-
tages of the detection methods on GEN and WGS data were reviewed by Winchester et al.38 and Pirooznia et 
al.39, respectively. One main limitation for all methods and sources of information is the quality of the reference 
genome on which the analysis is based. With a larger N50 contig size (26.3 vs 0.097 Mb) and a drastic reduction 
in the number of gaps (393 vs 72,051), the latest bovine reference genome assembly (ARS-UCD1.2)40 is a clear 
improvement compared to its predecessor UMD3.141 and CNV are now expected to be possibly identified with 
more confidence. The marker density of the GEN data on which CNV identification relies also influences the set 
of CNV identified42. An estimate of the effect of the marker density on the false positive CNV identification rate, 
however, is lacking when relying on ARS-UCD1.2.

Methods based on WGS to identify CNV follow four different approaches: split read, read pair, assembly 
and read depth9. In contrast, the identification of CNV relying on GEN data is only based on the signal intensity 
and, in some cases, on the B allele frequency values generated at genotyping38. The signal intensity is a measure 
of the fluorescence intensity at the time of genotyping and reflects the quantity of DNA material present for a 
given probe on an array at the time of genotyping. The read depth approach in WGS detection approaches is 
its best equivalent. In both of these cases, the identification of CNV is indirectly based on the amount of DNA 
found for a region in a sample. CNV identification from GEN data has been developed to analyze the informa-
tion of one individual at a time. To fairly compare CNV identified from these two sources of information, it is 
thus of importance to choose a single sample WGS identification method that relies on the read depth of the 
sequences. CNV regions identified based on two types of data and with two methods can be considered of high 
confidence24. The objectives of this study were: 1) to identify and describe CNV from GEN and WGS data based 
on ARS-UCD1.2; 2) to define sets of high confidence CNV regions following the two approaches and to find their 
possible impact(s) on traits of interest for the dairy industry through in silico functional analysis; 3) to compare 
the high confidence CNV regions with previously published variants; and 4) to estimate the effect of the marker 
density on false positive discovery rates.

Material and Methods
Animal material, genotyping and whole-genome sequencing. This study used only existing data-
sets and no animal samples were directly collected; all studies were conducted in accordance with the University 
of Guelph Animal Care Policy and Procedures, the provincial legislation and regulations of the Animals for 
Research Act, and the national guidelines and policies of the Canadian Council on Animal Care.

Both WGS and GEN data of 96 Holstein animals (15 cows and 81 bulls) were available. A total of 41 animals 
were sequenced within the Canadian Cattle Genome Project43 (CCGP), 32 within the Efficient Dairy Genome 
Project31 (EDGP), and 23 under the scope of multiple projects of the Vetsuisse Faculty of the University of Bern 
(CHE) and were primarily selected in order to identify causative variation for a wide range of diseases44–46. The 
Genetic Diversity Index method applied to select animals of the EDGP dataset for the sequencing was described 
in a simulation study47. DNA was extracted from frozen semen samples for the EDGP and the CCGP bulls. The 
WGS was performed using Illumina HiSeqTM 2000 (CCGP samples) or Illumina HiSeqTM X (EDGP samples). 
All analyses were carried out following the manufacturer’s protocols as described by Stothard et al.43. Paired-end 
reads were filtered, and the remaining reads were aligned to the latest bovine genome assembly (ARS-UCD1.2) 
using the Burrows-Wheeler Aligner48 (version 0.7.17) following the protocol of the 1,000 Bull Genomes Project 
(http://www.1000bullgenomes.com/, last accessed 2019-03-14). Reads bases were cut out with Trimmomatic49 
(version 0.38.1) that were 1) identified as Illumina adapters, 2) at the start to the end of a read and had a qual-
ity lower than 20, and 3) not reaching a minimum average quality of 15 over a sliding window of 3 bp. After 
trimming, reads were dropped that did not reach an average quality of 20 and that were shorter than 35 bp. 
After alignment, duplicate reads were marked with the function MarkDuplicates of the Picard toolkit (version 
2.18.15, https://broadinstitute.github.io/picard/, last accessed 2019-03-23) and base quality recalibration was per-
formed with the functions BaseRecalibrator and PrintReads of the Genome Analysis Toolkit50 (version 3.8). The 
set of known variants provided by the consortium of the 1,000 Bull Genomes Project was used for base quality 
recalibration.

The same 96 animals that were sequenced as described above were also genotyped. Among them, 57 animals 
were genotyped with the Illumina BovineHD Beadchip (HD; 777,962 markers), 22 with the GeneSeek® Genome 
Profiler Bovine 150 K (version 2 and 3; 150 K; 138,892 and 139,376 markers), 12 with the GeneSeek® Genome 
Profiler Bovine HD (GGPHD; 76,883 markers) and 5 with the Illumina BovineSNP50 Beadchip (50 K; 54,001 
markers). Thirteen additional Holstein bulls genotyped with the Illumina BovineHD Beadchip but not sequenced 
were included to analyze the influence of the genotype density on the CNV identification rates. The average gap 
sizes between the markers were 3.98Kb, 21.83Kb, 39.66Kb, and 66.75Kb for HD, 150 K, GGPHD and 50 K respec-
tively. Markers with a GenCall (GC) score below 0.15 were removed on a per-sample basis. The SNP markers 
positions were updated to ARS-UCD1.2 using the map files available on the NAGRP data repository (https://
www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/, last accessed 2019-03-14).

CNV identification and sets of high confidence CNV regions. The CNV were identified on all availa-
ble WGS and GEN data on a per-animal basis. The CNV detection software PennCNV42 (version 1.0.3) was used 
to identify CNV from the GEN dataset (GEN_CNV). PennCNV relies on a hidden Markov model based not 
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only on the Log R ratio (LRR) but also on the allelic ratio distribution (B allele frequency) of each sample. Prior 
to CNV identification and in order to reduce false positive results, the LRR values were corrected for genomic 
waves based on the Guanine-Cytosine content of the genomic regions 500Kb upstream and downstream of each 
investigated marker51. Only autosomes and markers with known position were considered for the analysis. After 
CNV detection, low-quality samples were removed from the analysis using the following cutoffs: LRR standard 
deviation above 0.3, B allele frequency drift above 0.01, and wave factor above 0.05. CNV covering less than 10 
SNP in samples genotyped with the Illumina BovineHD Beadchip and less than three SNP in all other samples 
were also removed.

The CNV detection software program CNVnator52 (version 0.3.3) was used to identify CNV from the WGS 
data (WGS_CNV). This software partitions the read depth (RD) of the aligned genome for each individual over 
segments of a given length, corrects those depending on their Guanine-Cytosine content and then performs 
CNV identification. CNV detection was carried out by dividing the genome into segments of 200 bp. With this 
segment length, the ratio between the RD and its variance over all samples was 4.58, which fits the recommended 
ratio between 4 and 5 by Abyzov et al.52. After CNV detection, following recommended practice from previous 
studies13, variants shorter than 1Kb or longer than 5 Mb were removed. Only CNV from regions with a mean RD 
different from the RD average of the sample (P < 0.05, t-test) and with more than 50% of the reads mapped with 
a quality greater than zero were kept.

Next, sets of high confidence CNV regions (CNVR) were created. The CNVR are formed by collating over-
lapping or contiguous CNV from GEN and WGS data. Merging CNV in regions was first described by Redon et 
al.53 and allows for population-wide CNV analysis. Two sets of high confidence CNVR were considered for anal-
ysis: ANIMAL_CNVR and POPULATION_CNVR (Fig. 1). To obtain the ANIMAL_CNVR set, CNV identified 
within the same animal from GEN and WGS data that had a reciprocal overlap of at least 50% of their length 
were considered high confidence CNV and merged to CNVR over all animals. All CNV identified with one data 
source that had any overlap were merged to create two sets of CNVR: the GEN_CNVR and the WGS_CNVR. 
GEN_CNVR and WGS_CNVR that reciprocally overlapped over at least 50% of their lengths and were present 
in more than 5% of the samples comprised then the POPULATION_CNVR set. CNVR that were found in some 
samples as CNG and in other samples as CNL were called MIX.

Effect of the genotype array density on the identified CNV. The LRR and BAF from all 70 samples 
genotyped with the HD panel were masked down to the SNP overlap with the markers of the 150 K panel and of 
the 50 K panel. The three datasets were edited as previously described: markers with a GC score below 0.15 were 
removed, LRR values were corrected for the Guanine-Cytosine content of the 500Kb regions up- and down-
stream each investigated marker, and markers positioned on sex chromosomes or without known positions were 
removed. CNV were then identified using PennCNV42 and filtered as described earlier for each dataset. Finally, 
CNV remained, which were identified on all three densities for 30 samples composed the set for analysis. CNV 
identified on multiple SNP densities that had an overlap of at least one base pair were considered equal.

GEN_CNV identification relied on the signal intensity value produced at genotyping; a higher signal intensity 
was equivalent to higher DNA concentration for a position, thus indicating a possible CNG or, in case the signal 
intensity was less strong than expected, a possible CNL. Filters were set at the time of CNV identification so that 
only regions where a minimum number of contiguous markers showing the same CNG or CNL pattern were con-
sidered CNV. Analysis of lower density marker panels could lead to the identification of CNV in regions where 
information of more markers in the same region would show no CNV pattern. CNV identified in those regions 
on lower density marker panel could thus be considered false positives. A situation where a CNL was identified 
with a lower density marker panel but not with a higher density marker panel is represented in Fig. 2. The upper 
part of the figure depicts a genomic region with a higher density marker panel, whereas the lower part depicts a 

Figure 1. Steps to define high-confidence animal (ANIMAL_CNVR) and population (POPULATION_CNVR) 
copy number variant regions (CNVR).
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genomic region with a lower density panel. In this example, a minimum of three markers had to show the same 
CNG or CNL pattern for the identification of a CNV. Vertical bars going through the genomic region represent 
markers with no CNG or CNL pattern, vertical bars only above or only below the genomic region represent CNG 
or CNL, respectively. The lack of marker information in the lower density panel across the genomic region led 
to the identification of a CNL that was not found in the higher density panel; such a CNL was considered a false 
positive hit in this study. False positive rates were computed per sample as the proportion of CNV found only 
with the 150 K or only with the 50 K over all CNV found with any density. Confidence intervals of 95% (95%-CI) 
for the false positive rates were computed with 10,000 times bootstrapping for the number of CNV identified and 
both false positive rates.

Previously known variants. Two sets of previously known variants were considered for comparison with 
the high confidence CNVR identified in this study: the CNV deposited on the Genomic Variant archive database 
of EMBL-EBI (DGVa; https://www.ebi.ac.uk/dgva, last accessed 2019-03-24) and the CNVR identified on the 
datasets A, B, and C described by Kommadath et al.31.

The CNV identified and discussed in eight studies were available from the DGVa. Out of those, four studies 
identified CNV using GEN data23,54–56 and three studies identified CNV from WGS data57–59 and one study iden-
tified CNV from whole-exome sequence data26s. The number of samples of the studies varied from 6 to 539 and 
different breeds were included as well as Bos indicus animals (Table 1). Chromosome, start position, end position 
and type of all published CNV were retrieved and merged to form the DGVa CNVR dataset used for comparison 
with our results. Kommadath et al.31 identified CNVR in Bos taurus animals using the multi-sample approach 
implemented in cn.MOPS60 and relying on WGS data. They describe CNVR from four datasets with different 
numbers of samples of different breeds. As dataset D was the same as the 32 EDGP samples, only CNV identified 
on datasets A, B, and C of this study were considered. CNVR shorter than 5 Mb, and that were present in at least 
5% of the samples of each dataset were retrieved and merged to form the CNVR set used for comparison with 
our results.

Both sets of known CNVR were generated based on the UMD3.141 bovine reference genome but our results 
were based on ARS-UCD1.2. To allow for comparison between all sets of CNVR, coordinates of the previously 
described variants were translated to their ARS-UCD1.2 equivalent using the UCSC Genome Browser LiftOver 

Figure 2. Copy number variants identified with a lower density marker panel but not with a higher density 
marker panel are considered false positive results. Vertical bars below the horizontal bar represent markers 
showing copy number loss. Vertical bars above the horizontal bar represent markers showing copy number gain. 
Vertical bars across the horizontal bar represents markers showing no copy number variation. In this example, 
three markers showing a copy number variation were needed to identify a variant.

Study by Data type** No. samples No. breeds

Liu et al., 2010 GEN 90 17*

Hou et al., 2011 GEN 539 21*

Hou et al., 2012 GEN 472 1

Bickhart et al., 2012 WGS 6 4*

Boussaha et al., 2015 WGS 62 3

Keel et al., 2016 WES 175 20

Karimi et al., 2017 GEN 50 8*

Mesbah-Uddin et al., 2017 WGS 175 3

Table 1. Studies, data type, number of sample and number of breeds composing the CNV dataset from the 
Database of Genomic Variants archive. *Bos indicus animals were included along with Bos taurus in these 
studies. **WGS – whole-genome sequence, WES – whole-exome sequence, GEN – genotyping array.
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tool61. Minimum ratio of bases that had to remap was set to 0.4, all other liftOver parameters were kept at their 
default values. In total and after translation to ARS-UCD1.2 positions, 9,169 CNVR composed the DGVa set and 
4,525 CNVR were retrieved from the database of Kommadath et al.31. In all comparisons between CNVR sets, 
regions with a reciprocal overlap of at least 50% of their length were considered equal.

In silico functional analysis. Bos taurus coding sequences located at the same genomic regions as the high 
confidence CNVR were retrieved from the Ensembl Genes database62 (ARS-UCD1.2, annotation release 96) with 
the Ensembl Biomart tool63. The OmicsBox (version 1.0.0; new updated software from Blast2GO64) was used to 
annotate the regions. The GO analysis was performed on the retrieved sequences taking into account the three 
GO categories separately (biological process, molecular function and cellular component) using OmicsBox64. 
Coding sequences were annotated with blastx and the OmicsBox mapping and GO annotation routines65. 
Nucleotide query sequences were compared against all the sequences found in the database of the National 
Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov, last accessed 2019-04-25). Matches 
between sequences of this study and the database were reported that reached a significance level of at least 0.001 
(e-value) and had a similarity of at least 90%. No specific editing was made based on the sequence coverage. The 
GO significance levels were computed following Fisher’s exact test for multiple testing in OmicsBox. As described 
by Cánovas et al.66 and Li et al.67, the OmicsBox suite was also used to examine associated biological pathways 
involving the enzymes coded by the genes present in the high confidence CNVR based on the complete Kyoto 
Encyclopedia of Genes and Genomes68 (KEGG). GeneCards information was also retrieved for the identified and 
named genes69.

Results
Alignment and update to the bovine reference genome ARS-UCD1.2. The sequences of 96 
Holstein animals were aligned to the bovine reference genome ARS-UCD1.240. On average, 559,155,098 reads 
(standard deviation (SD) = 258,847,099) were obtained per animal, of which 96.6% (SD = 5.3%) were correctly 
mapped. Differences were observed depending on the sequencing project under which sequences were generated 
(Table 2). The average sequence coverage was of 20x and ranged from 8.57x to 42.53x. CCGP samples had an 
average sequence coverage of 12x (SD = 2x), EDGP samples had an average sequence coverage of 35x (SD = 4×), 
and CHE samples had an average sequence coverage of 15x(SD = 5x) [Suppl. Table 1].

Positions of 85.4%, 86.2%, 90.4%, and 72.3% of the GEN markers on ARS-UCD1.2 were retrieved for the 
Illumina BovineHD Beadchip, the GeneSeek® Genome Profiler Bovine 150 K, the GeneSeek® Genome Profiler 
Bovine HD, and the Illumina BovineSNP50 Beadchip, respectively. Average percent of markers remaining after 
quality controls ranged between 68.5% and 88.5% (Table 3). The number of samples that passed the GEN quality 
filters limited the number of samples to 67 for both GEN and WGS datasets [Suppl. Table 2].

Copy number variants identification. On average 7 GEN_CNV (min: 1, max: 70) and 1,855 WGS_CNV 
(min: 1,335, max: 4,413) were identified in 67 samples after quality control on a per sample and on a per CNV 
basis. The total number of CNV detected were 471 in GEN and in 124,302 in WGS. More CNL were found in 
both GEN and WGS data with 299 (63.4%) and 96,023 (77.2%) variants, respectively. CNV discovery in GEN was 
based on an average of 433,619 (SD = 280,740) markers. The data available for this study did not permit investiga-
tion of the effect of different read depths on the identified WGS_CNV. Average CNV lengths were of 132 Kb (min: 
5 Kb, max: 1341 Kb) for the GEN set and of 22 Kb (min: 1.2 Kb, max: 4783 Kb) for the WGS set. The WGS_CNV 
were significantly longer than the GEN_CNV (P < 0.0001, Wilcoxon rank sum test with continuity correction). 

Sequencing project Average no. of reads (SD*)

Average percentage 
of reads mapped 
(SD*)

Average read 
depth (SD*)

No. of 
samples

Canadian Cattle 
Genome Project 404,535,408 (70,157,276) 97.0 (1.1) 12×(2×) 42

Efficient Dairy 
Genome Project 903,140,899 (89,796,943) 97.6 (0.5) 35×(4×) 31

Vetsuisse Faculty 377,871,061 (118,817,596) 94.3 (10.5) 15×(5×) 23

Table 2. Summary of the whole-genome sequence dataset. *SD = standard deviation.

Genotype array
No. of 
markers

No. of remapped 
markers (% total)

Average no. of markers 
after QC* (% total)

No. of 
samples

No. of samples 
after QC*

Illumina BovineHD 
Beadchip 777,962 664,143 (85.4) 660,951 (85.0) 57 47

GeneSeek® Genome 
Profiler Bovine 150 K 138,892 119,665 (86.2) 116,135 (83.6) 22 14

GeneSeek® Genome 
Profiler Bovine HD 76,883 69,537 (90.4) 68,059 (88.5) 12 3

Illumina BovineSNP50 
Beadchip 54,001 39,030 (72.3) 36,991 (68.5) 5 3

Table 3. Summary of the genotyping information dataset. *QC = quality controls.
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Once collated to CNV regions, the number of variants was reduced to 246 GEN_CNVR and 8,974 WGS_CNVR 
that had an average length of 111 Kb (min: 5 Kb, max: 1,787 Kb) and 54 Kb (min: 1.2 Kb, max: 13,296 Kb), respec-
tively. The length distributions of the CNVR sets were not parametric and not different (P > 0.05, Wilcoxon rank 
sum test with continuity correction).

Copy number variants and genotyping marker densities. Masking marker information of the ani-
mals with HD genotypes to 150 K and 50 K SNP panels enabled measurement of the effect of marker panel on 
the false positive CNV identification rate. Among the 70 animals with HD_GEN information, 30 passed all per 
sample-based filters and had CNV in each density. CNV lengths were similar to the CNV lengths reached with the 
complete GEN data, as previously described. On average, 8.451 CNV (95%-CI: 8.426, 8.476) were identified with 
the HD panel, 4.993 (95%-CI: 4.983, 5.002) with the 150 K panel, and 1.869 (95%-CI: 1.865,1.872) with the 50 K 
panel per animal. Average overlaps of CNV between set per sample are shown in Fig. 3. The CNV falsely identi-
fied with the 150 K marker panel composed on average 21.7% of the CNV identified with all densities (95%-CI: 
21.6, 21.7) and 12.2% (95%-CI: 12.1, 12.2) of the CNV identified with 50 K marker panel were false positive.

High-confidence copy number variant regions. Altering the minimum percentage of reciprocal over-
lap between GEN_CNV and WGS_CNV to select high confidence CNV between 20 and 80 percent changed the 
number of variants considered to be of high confidence linearly. Low required overlap percentage (10%) or high 
overlap percentage (90%), however, had a larger impact on the number of high confidence variants, increasing 
(low overlap) or reducing (high overlap) it drastically (Fig. 4).

In total, 52 ANIMAL_CNVR (30 CNL, 21 CNG, and 1 MIX) and 36 POPULATION_CNVR (15 CNL, 7 
CNG, and 14 MIX) were identified on 22 and 20 chromosomes (Fig. 5). Visual identification of true positive 
WGS_CNV found within high confidence CNVR was possible (e.g. Figure 6) as well as the identification of false 
positive WGS_CNV outside of any high confidence CNVR boundaries (e.g. Figure 7). The total genome covered 
was 0.22% and 0.24% for ANIMAL_CNVR and the POPULATION_CNVR, respectively. The number of animals 
carrying a CNVR ranged from one to 25 for the ANIMAL_CNVR and from four to 67 for the POPULATION_
CNVR. On one hand, 27 ANIMAL_CNVR (52%) were detected only in one sample. On the other hand, five 
POPULATION_CNVR (14%) were found in all samples [Suppl. Table 3].

Figure 3. Average number of copy number variants (CNV) identified per animal based on the HD (777 K), 
150 K, and 50 K marker densities. Letters represent the zones of the figures. False positive discovery rates were 
the ratio (c + f)/(all CNV) and (f + g)/(all CNV) for 150 K and 50 K, respectively.

Figure 4. Number of high confidence copy number variant regions (CNVR) identified at the animal level when 
different minimum percentages were considered for the reciprocal overlap between the copy number variants 
identified using genotype array or whole-genome sequence information.
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A total of 31 CNVR were found in common between both ANIMAL_CNVR and POPULATION_CNVR 
sets. The two sets of ANIMAL_CNVR and POPULATION_CNVR were merged for functional analysis to a set of 
unique high confidence CNVR in which overlapping CNVR were only considered once. Accordingly, 57 regions 
were considered unique high confidence CNVR. Half of the 57 unique high confidence CNVR were not found in 
the previous studies of which CNVR were retrieved. These 28 candidate CNVR were all found in the ANIMAL_
CNVR set but only 12 of them were part of the POPULATION_CNVR set. No unique high confidence CNVR 
was found in any gap of the reference assembly.

Putative functions of the identified CNVR. The 57 unique high confidence CNVR returned 188 
Ensembl sequences. Peptide sequences of 160 of those could be retrieved and analyzed with the OmicsBox anno-
tation routine. After analyses, 104 sequences were found that had BLAST hits and could be mapped and anno-
tated for 35 high confidence CNVR. These 35 regions represented 58% of the ANIMAL_CNVR and 61% of 
the POPULATION_CNVR. Significant GO terms were identified in the three GO main categories biological 
processes, molecular functions, and cellular component. At the most informative level of the biological processes, 
69% of the GO terms related to transcription-related functions and 31% to sensory perception of smell. Of the 
molecular function terms, 35% related to olfactory receptor activity, 36% to G protein-coupled receptor activity 
and 29% to binding. Regarding the cellular component terms, 37% of the GO terms were related to membrane 
components, 36% to cytoplasm elements, and 27% to intracellular elements. Enzyme codes could be retrieved for 
10 sequences and connected with 8 KEGG biological pathways (in decreasing number of linked sequences): glyc-
erolipid metabolism, fatty acid elongation, drug metabolism, glycerophospholipid metabolism, nitrogen metab-
olism, starch and sucrose metabolism, Th1 and Th2 cell differentiation, and T cell receptor signaling pathway. 
Genes present on the region and their GeneCards information as well as significantly associated GO terms and 
KEGG pathway are reported for each unique high confidence CNVR in the Suppl. Table 3.

Olfactory receptor genes and immunity-related genes are known to be more often duplicated than other genes 
and are therefore candidates for CNV studies70. Genes of the olfactory receptor family (e.g. OR5H8, OR7A10, 
OLF4, OR2AJ) were contained in six high confidence CNVR on BTA1 (42506338-42587000), BTA7 (8633381–
9847400; 10230437–1049220; 41582849–41756370), BTA10 (27020800–27056000), and BTA15 (79748837–
79817000). Immunity-related genes were found in five high confidence CNVR: Peptidylprolyl Isomerase A 
(PPIA) was found in a CNVR on BTA1 (93367289–93763299), T Cell Receptor Delta Locus (TRD) was found in 
a CNVR on BTA10 (22340671–22570397), Complement Factor H (CFH) and referentially Expressed Antigen 
In Melanoma (PRAME) were found in a CNVR on BTA16 (5701395–5889597 and 54476201–54495676, 

Figure 5. Distribution of the high confidence copy number variant regions (CNVR) across the bovine genome 
found in different sets of CNVR. Only chromosomes carrying an identified variant are pictured.
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respectively), and five genes of the DEFB family (DEFB103A, DEFB, DEFB1, DEFB402, DEFB4A) were found 
in a CNVR on BTA27 (6696801–7186762). Moreover, a CNVR on BTA7 (69606401–69655411) was found to 
be associated with two KEGG pathways related to immunity function: Th1 and Th2 cell differentiation and 
T cell receptor signaling. Finally, three regions were found that contained genes related to embryonic devel-
opment (RET, COL27A1, POPDC3); BTA8 (103487143–103513600), BTA9 (44726004–44875567), BTA28 

Figure 6. Read alignments of four samples on Bos taurus autosome 20 from 59,901,001 base pairs (bp) to 
59,910,000 bp belonging to the unique high confidence copy number variant (CNV) region no. 48. The two top 
samples have no predicted CNV in the region under the red bar, whereas the two bottom samples have a copy 
number loss predicted.

Figure 7. Read alignment of three samples on Bos taurus autosome 20 from 2,759,000 base pairs (bp) to 
2,770,000 bp. Although a copy number gain is predicted for the top sample for the region under the red bar, no 
difference in alignment variation can be observed.
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(13354073–13504624), and eight genes of the homeobox A family contained in one region on BTA4 (68808125–
68911600). Genes of the homeobox A family are known for their important role in embryonic development in all 
mammalian species71 [Suppl. Table 3].

Discussion
In a first step of this study, the whole-genome sequences of 96 Holstein animals were aligned and the genotype 
array variant positions of 109 Holstein animals (the same 96 plus 13 bulls for which only HD genotype informa-
tion was available) were updated to the bovine reference genome ARS-UCD1.2. In a second step, copy number 
variants were identified on the WGS and the GEN data of all animals on a per sample basis. High confidence 
CNVR were then created in silico following two approaches and putative function of the resulting CNVR were 
retrieved. Finally, identification of CNV on the same sample with reduced marker panels was analyzed to estimate 
false positive CNV discovery rates when those were identified on lower density genotype array information.

No difference between CNV identified from samples with lower or higher read depth could be observed, a 
verification that the approach used to identify CNV from WGS data used in CNVnator correctly handled the 
difference in read depth. Applying a read depth based approach to WGS samples with differing coverage has been 
found to perform better than approaches based on split read or paired end27. Reduction in the number of markers 
included for GEN_CNV identification on a per animal basis was mostly due to the loss of markers when updating 
their position to ARS-UCD1.2. A few more markers (3.8% to 0.4%, depending on the marker panel), however, 
were removed because of their low GC scores. The remaining markers were still distributed evenly on the genome, 
which allowed for further analyses of the data.

Although relying on the same samples, CNV identification on GEN and WGS data resulted in different sets 
of variants: more than 250 times more CNV were identified from the WGS data when compared with the GEN_
CNV and the total length of the latter was six times higher than that of the WGS_CNV. Such differences in CNV 
number and length between CNV identified on WGS and GEN information were already described in a study 
by Zhan et al.24. Both measures were different due to the large difference in resolution between GEN and WGS 
data. GEN discovery only relies on a limited number of genome positions whereas the WGS discovery relies 
on all 2,716,000 Kb of the sequences40. The difference in the number and length of CNV was also due to the 
fact that breakpoints can only be placed at the position of a marker with GEN data, whereas any position of the 
genome can be defined as a CNV breakpoint using WGS. Furthermore, difference in the set of WGS_CNV and 
GEN_CNV comes from the relative versus absolute character of both identification methods. Whereas the CNV 
identification on GEN first rely only on one nucleotide and its signal intensity at a time, relative change in RD 
between segments of the genome are considered to identify WGS_CNV. More CNL than CNG were observed 
in both GEN and WGS CNV sets. Generally, CNL are more often found than CNG irrespective of the type of 
data used for CNV identification27,29,35,36. Although detection of both CNL and CNG is of importance, CNL are 
predicted to have more influence as they affect gene dosage and can lead to exposure of a normally unexpressed 
(deleterious) recessive allele70. CNL are therefore expected to be found less numerous than CNG due to natural 
selection against deleterious variants in any species, but still found in higher number with the current CNV iden-
tification methods42,55,72,73, it can be concluded that CNL are easier to detect than CNG.

Differences in marker densities were not directly accounted for in this study even though four marker panels 
were used in our analyses (Table 3-3). The number of CNV identified decreased with the number of markers on 
which the identification relied. In contrast, the CNV length increased when fewer markers were included, as 
the distance between markers increased. This is in line with the difference in CNV length observed between the 
GEN_CNV and the WGS_CNV described earlier in this paper. In this analysis, CNV that were identified with a 
lower density but not with the HD marker panel were considered false positive. False positive discovery rates of 
12% for the 50 K and of 22% for the 150 K dataset were estimated. Both estimated false positive discovery rates 
were higher than those reported previously from studies based on WGS data, which ranged between 2% and 
8%57,74. The lower resolution and lower precision of the CNV identification on GEN data could explain the higher 
rates observed in our study. In our study, the false positive identification rates were estimated assuming that any 
CNV identified with the HD marker panel was a true CNV. This strong assumption probably led to underestima-
tion of the false positive identification rates but as these were already consequent, it is certain that CNV identifi-
cation using a single method in silico on a single set of samples is not robust.

The compromise between high true positive discovery rates and low false discovery rates of CNV against high 
numbers of non-identified CNV and high number of falsely detected CNV is addressed with various measures or 
quality control protocols in each newly described in silico CNV identification method. However, only experimen-
tal verification of the identified CNV with qPCR or FISH analyses, for instance, can be considered true valida-
tion57. These methods have the disadvantage of being lower throughput, resulting in greater time and cost than in 
silico methods. In this study, sets of CNV were defined to be partly validated (or else said to be of high confidence) 
when the same region was detected as a CNV in GEN and in WGS data. This methodological consensus approach 
follows not only the conclusion of Baes et al.75, who found the highest quality single nucleotide variants when 
those were identified by multiple software but also the study by Zhan et al.24 on CNV identification. Two sets of 
high confidence CNVR were created with the same samples. The main difference between those two sets lies in 
the level at which the consensus between the GEN and the WGS data is implemented. The high confidence of the 
ANIMAL_CNVR is gained through overlapping of CNV of one animal that were identified from GEN and WGS. 
In contrary, the high confidence of the POPULATION_CNVR is gained through overlapping of CNVR from all 
animals that were identified on the GEN or the WGS. In our study, the sample size is limited (n = 67 after quality 
control) so that although the term “population” is used in POPULATION_CNVR, the data do not represent the 
whole Holstein cattle population. However, an experiment following the same method with a greater number of 
samples could be considered representative of a population and the term is therefore kept throughout this paper. 
An important parameter used for the identification of high confidence CNVR is the minimum percentage of 
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reciprocal overlap set to consider two variants equals. Depending on the study, requirements vary from any over-
lap (minimum 1 bp) to overlap values between 50% and 90%36,54,76. In order to define this threshold in our study, 
the number of high confidence CNVR remaining with minimum reciprocal overlap ranging between 10% and 
90% was calculated. Apart from a steady reduction of the number of high confidence CNVR with increasing min-
imum percentages from 20% to 80%, no plateau was observed so that any value in this interval could be selected 
(Fig. 4). The greater change in number of high confidence CNVR identified with 10% and 90% of minimum recip-
rocal overlap are probably due to the difference in the range of the length between WGS_CNVR and GEN_CNVR 
as for example short WGS_CNVR cannot cover the required proportion of the relatively long GEN_CNVR even 
if they have breakpoints within the GEN_CNVR. Considering the relatively small sample size and the aim to 
compare two high confidence CNVR sets created with the datasets of the present study, a minimum percentage of 
reciprocal overlap of 50% was selected for both approaches.

With the variants representing 0.22% and 0.24% of the total genome and the similarity of their length dis-
tributions, both sets can first be considered similar. Genome coverage of the CNV reported in previous stud-
ies on bovine CNV ranged between 0.1% and 6.0% and led to the conclusion that higher number of samples 
and higher data resolution (WGS versus GEN) led to higher number of CNV discovered and thus to higher 
experiment-wise genome coverages24,34,74,76. In this study, high confidence CNVR had not only to be identified 
with both WGS and GEN information but also only relied on 67 samples. The stringent CNVR discovery param-
eters as well as the relatively small number of samples explain the low coverage values. Differences between 
the POPULATION_CNVR and the ANIMAL_CNVR, however, were observed at multiple levels. Of the CNVR 
identified in this study but not previously described, only half were included in the POPULATION_CNVR set, 
whereas all were included in the ANIMAL_CNVR set. The lower concordance of the CNVR found in the latter 
can be an indication that this approach is less reliable than the POPULATION_CNVR although low overlap 
between studies is an expected result12,26,34–37. Over 50% of the ANIMAL_CNVR were only found in one sample 
but some POPULATION_CNVR identified were shared by all samples so that this approach can be considered 
more inclusive. The weight given to a single sample/data combination with this approach is lower than that in the 
ANIMAL_CNVR approach, as CNV can be found relying on one data type in one animal and on the other data 
type in another animal, but still be part of the high confidence POPULATION_CNVR set. Considering that all 
samples came from the Holstein population, the regions found in all samples could be population-specific. For 
instance, a region on BTA7 (pos. 41582849–41756370) could be found in a review on selective sweeps linked with 
animals of the Holstein breeds only77.

Annotation and pathway analysis of the unique high confidence CNVR showed results in accordance with 
previous studies on cattle CNV. Bickhart and Liu70 previously described known association in cattle between 
CNV and traits of importance to the industry related to the immunity of the animals. The olfactory receptor 
genes family was also described in the same review as a group of candidate genes for higher duplication rates. It is 
thus no surprise that more than 20% of the unique high confidence CNVR contained genes associated with GO 
terms or KEGG pathways linked with those two functions. A previous study on Holstein dairy cattle showed SNP 
regions associated with immunity and reproduction that also contained olfactory receptor genes78. In addition to 
olfactory senses and immunity, CNV have been described that are related directly or indirectly to reproduction 
traits14. Four regions were annotated through GeneCards information with reproductive traits. Remarkably, one 
of these regions (BTA4;68808125–68911600) contains eight genes of the HoxA gene family. The role of this gene 
family on embryonic development has been described in a study on Chinese indigenous sheep79.

Conclusions
Although each approach has strengths and flaws, CNV can be identified with high confidence when multi-
ple methods or data sources form the base of the identification. The update of the bovine reference genome 
to the ARS-UCD1.2 assembly still leads to comparable CNV identification results with the previous assembly 
(UMD3.1). Population-wide identification allowed identification of variants that were more often already known, 
were more inclusive as less weight was given to the individual sample CNV, allowed identification of regions 
common to all samples, and could more often be linked to a putative function than sample-based identified 
CNV. When relying only on genotyping signal intensity information, CNV identification is possible and the 
variants can be used in downstream analysis, but high false positive identification rates should not be ignored. 
Further research on larger datasets is now needed. These studies should target high confidence CNVR with a 
population-wide approach and account for false positive variants.

Data availability
Raw sequence data of the CCGP, EDGP and CHE have been deposited to public databases (Sequence Read 
Archive (SRA) accession SRP017441 for CCGP and accession SRP153409 for EDGP, and European Nucleotide 
Archive (ENA) project ID PRJEB18113, respectively). For access to the genotypes, interested researchers are 
asked to contact the owner of the data directly.
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