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Abstract

Background: Copy number variants (CNVs) contribute to genetic diversity and phenotypic variation. We aimed to discover
CNVs in taurine cattle using a large collection of whole-genome sequences and to provide an interactive database of the
identified CNV regions (CNVRs) that includes visualizations of sequence read alignments, CNV boundaries, and genome
annotations. Results: CNVs were identified in each of 4 whole-genome sequencing datasets, which together represent >500
bulls from 17 breeds, using a popular multi-sample read-depth−based algorithm, cn.MOPS. Quality control and CNVR
construction, performed dataset-wise to avoid batch effects, resulted in 26,223 CNVRs covering 107.75 unique Mb (4.05%) of
the bovine genome. Hierarchical clustering of samples by CNVR genotypes indicated clear separation by breeds. An
interactive HTML database was created that allows data filtering options, provides graphical and tabular data summaries
including Hardy-Weinberg equilibrium tests on genotype proportions, and displays genes and quantitative trait loci at each
CNVR. Notably, the database provides sequence read alignments at each CNVR genotype and the boundaries of constituent
CNVs in individual samples. Besides numerous novel discoveries, we corroborated the genotypes reported for a CNVR at the
KIT locus known to be associated with the piebald coat colour phenotype in Hereford and some Simmental cattle.
Conclusions: We present a large comprehensive collection of taurine cattle CNVs in a novel interactive visual database that
displays CNV boundaries, read depths, and genome features for individual CNVRs, thus providing users with a powerful
means to explore and scrutinize CNVRs of interest more thoroughly.
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Introduction

Structural variants, originally defined to include insertions,
deletions, and inversions >1 kb in size [1], now encompass
events as small as 50 bp [2]; this change in definition is likely due,
in part, to developments in sequencing technology that greatly

improved the resolution of discovery achievable. Copy number
variants (CNVs) are a class of unbalanced structural variants
characterized by changes to the number of base pairs in the
genome and manifested as gains or losses of regions of genomic
sequence between individuals of a species; CNVs therefore con-
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tribute to genetic diversity. Several examples have been reported
of CNVs associated with normal variation, disease, evolution,
and adaptive traits in human, animal, and plant species [3–7].
With next-generation sequencing (NGS) technology becoming
more cost-effective, traditional methods for CNV discovery that
involved hybridization-based microarray approaches like array
comparative genomic hybridization (CGH) and single-nucleotide
polymorphism (SNP) microarrays are now being replaced by
powerful sequencing-based computational approaches.

Studies on CNV discovery and characterization have been
performed on several farm animal species [8–14] with the ulti-
mate objective of using variants that are associated with traits
of economic importance in genetic improvement programs. In
cattle, several studies [15–29] have been conducted, in both tau-
rine and indicine breeds, using a variety of algorithms to iden-
tify thousands of CNVs. While attempts have been made to pro-
vide overall assessments on the reliability of CNV regions (CN-
VRs) reported in some of those studies using such approaches
as parent-offspring trios [9], PCR [8], or a combination of in sil-
ico and experimental techniques [21], the majority have been
limited to providing the CNVR boundaries alone. Assessing the
potential impact of CNVRs at individual and population levels
becomes difficult in the absence of genotypes and boundaries
of CNVs constituting CNVRs in individual samples. A recent
study [30] has proposed the use of BAM confirmation (i.e., visu-
ally examining read depth and read pairing characteristics) as
a strategy to assess the accuracy of predicted CNVRs. This ap-
proach was then applied to a limited number of CNVs selected
on the basis of overlap with certain human disease-associated
genes [30]. Couldrey et al. [31] illustrated the use of long-read se-
quence information combined with a CNV transmission-based
approach to confirm a subset of CNVs that segregate in the New
Zealand dairy cattle population. Briefly, the putative CNVs dis-
covered from long-read sequence information in a prominent
Holstein-Friesian bull used in New Zealand were first compared
with those discovered from short-read sequences in the same
bull. Next, a population of 556 cattle representing the wider New
Zealand dairy cattle population were short-read sequenced and
genotyped at those putative CNV regions, followed by a genome-
wide assessment of transmission level of copy number based on
pedigree. Visual assessment of highly transmissible CNV regions
provided additional evidence to support the presence of CNV
across the sequenced animals. Currently, the high cost of long-
read sequencing limits adoption of this approach to large num-
bers of animals representing different breeds, and other stud-
ies that provide supportive evidence on a genome-wide scale to
help assess the quality of CNVs predicted from short-read se-
quencing or SNP array data are extremely limited.

The objectives of the present study were to identify and char-
acterize genome-wide CNVRs among popular taurine cattle (Bos
taurus, NCBI:txid9913) breeds and to present the results in a
comprehensive interactive database of CNVRs and copy num-
ber genotypes, integrated with visualizations of sequence read
alignments and genome features. Briefly, CNVs were identified
in each of 4 available whole-genome sequencing (WGS) datasets,
which together represented 553 bulls from 17 different breeds
(1 dairy and 16 beef breeds). We used cn.MOPS [32], a popu-
lar CNV detection software that employs a multi-sample read-
depth−based algorithm to estimate copy number genotypes per
sample. Custom software was then used to convert the results
for each dataset into an interactive visual database, a first of its
kind for genome-wide CNVR data in any species. The databases,
which can be downloaded and then opened using a modern web
browser, give users the ability to assess each CNVR with sup-

portive evidence and multiple levels of genome annotation. Fur-
ther advantages of this format include, for example, the ability
to adjust filtering criteria, compare CNV boundaries and geno-
types across samples, and search for affected genes or regions
of interest.

Results
Adverse influence of batch effects on CNV discovery
from combined datasets

We obtained WGS data on a total of 553 bulls from 4 different
sources; all were paired-end sequenced but differed in the se-
quencing platform used as well as the coverage, read length,
sample size, and breed representation (Table 1). Detailed infor-
mation on samples and sources of sequence data are provided
in Supplemental Table S1. Dataset A was generated using the
SOLiD platform and had lower read length and mean coverage
(Supplemental Fig. S1) than datasets generated using the Illu-
mina platform.

Using aligned sequence data from all bulls simultaneously
as input into cn.MOPS, we assessed counts of reads aligned to
each non-overlapping window across the genome. The window
length (WL) was chosen such that each segment comprised on
average 100 reads, as is recommended in cn.MOPS documenta-
tion. A WL of 1,000 bp satisfied this criterion for datasets A−C.
For uniformity, we chose to keep the same WL for dataset D, de-
spite the fact that it had substantially greater sequencing cover-
age (Table 1) and would have allowed for a lower WL. The CNV
discovery algorithm implemented in cn.MOPS derives its power
from modelling read count variability across samples, and there-
fore read count normalization was performed as a prerequisite.
A principal component analysis (PCA) on the normalized read
counts per segment across samples revealed clear separation
amongst datasets, which was indicative of uncorrected batch
effects (Fig. 1a). Proceeding with CNV discovery and genotype
characterization using those read counts from all datasets to-
gether (after excluding the 4 PCA outliers) revealed consider-
able differences in the distribution of CNV genotypes per dataset
(Fig. 1b). The genotype distributions were skewed towards dele-
tion type (DEL) CNVs in datasets A and B (datasets with compar-
atively lower read lengths) as opposed to datasets C and D where
the distributions were skewed towards amplification (AMP) type
CNVs. These aberrations may arise from the presence of more
regions of limited or no coverage in datasets A and B, which trig-
gered false DEL type CNV genotype calls when compared across
corresponding regions in other datasets with adequate coverage
due to longer read length or advances in sequencing technol-
ogy. Together, these results indicated the necessity to analyse
distinct datasets individually with additional dataset-specific fil-
ters applied to identify and remove outlier samples.

Distributions of CNV genotypes were more consistent
across datasets that were analysed individually

To avoid the adverse influence of batch effects on CNV discov-
ery with cn.MOPS when combining datasets with genomic re-
gions of imbalanced coverage, we analysed each dataset indi-
vidually. Using cn.MOPS, CNVs were identified after first exclud-
ing the 4 PCA outliers (3 in dataset A and 1 in dataset B; see
Fig. 1b) and 3 samples within dataset A that were of substantially
higher coverage than the others within that dataset (Supple-
mental Fig. S1). Contrary to what was observed when datasets
were combined, the proportions of DELs among CNVs were quite
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Table 1: Sequencing and sample characteristics per dataset

Dataset (year
sequenced) Platform (read length)

Coverage mean
(SD)

Total
samples Breed codes ∗ (No. of samples)

A (2012–13) SOLiD 5500xl (75 × 35 bp) 7× (4.6) 85 SIM (30), LIM (28), CHA (16), BBR (8), GVH (3)
B (2013–14) Illumina HiSeq 2000 (100 bp) 11.6× (3.3) 298 HOL (48), AAN (47), SIM (35), HER (33), GVH (28), RAN (26),

CHA (25), BBR (16), XXX (14), PIE (7), RDP (7), LIM (6), HYB
(3), BAQ (1), DEV (1), SAL (1)

C (2016) Illumina HiSeq X (150 bp) 10.3× (2.6) 138 CHA (42), LIM (30), SIM (27), AAN (15), HER (15), BBL (9)
D (2017) Illumina HiSeq X Ten (150 bp) 37.9× (3.6) 32 HOL (32)

∗The breed codes used for purebred cattle follow the guidelines provided by the International Committee for Animal Recording (ICAR) for identification of semen straws

for international trade. In addition, XXX represents crossbred cattle and HYB represents composite breeds other than BBR. AAN: Angus; BAQ; Blonde D’Aquitaine; BBL:
Belgian Blue; BBR: Beef Booster; CHA: Charolais; DEV: Devon; GVH: Gelbvieh; HER: Hereford; HOL: Holstein; LIM: Limousin; PIE: Piedmontese; RAN: Red Angus; RDP:
Rouge des Prés; SAL: Salers; SIM: Simmental.

��� �� ����� �
�� �

�

�

� ����� ��
���

��
�

��
�
���� ���� ������

�

�

�

�� �� �� ��� ������ �� ����� ��
� ��

�

�

�
�
���

�

�

�
� �� ����� ����� �� ���

�
��� ���� �

��������� ���� ����������� ��� �� ������� ��������

���
��
���� ���
�
�� �� ����� ��

� ��� ��� �� �� � � � �������
�

������ ������ ��������� �� ��� �� ��� ��
� ��

�� � ��� ���
�� ��

�

�
��� �����
� � �� �

���������� ���� ��� � � ���
�� � �
�

� �� �� �
������
�������

�
�

����� �� ������� ��� ���� ����� ������������� �� ������������ ���������� �����
��
�

�
��

������ ����
�

�
��� ������

�

�����
������
��� ���
�
�
��

��
�
�

�

�
�

� ��
�
����

��

�

�

���

�

�������� �� ��

��
�

�
���

� ��

���� ���� �

��
�

���
�
���� � �����
�
����

�
�����

������
�

�������� �� ���� � ��� ������� � ������

−2000

0

2000

4000

0 3000 6000

PC1: 17.96% variance

P
C

2:
 8

.3
3%

 v
ar

ia
nc

e

Datasets
�

�

�

�

A

B

C

D

(N=553)

a

0.00

0.25

0.50

0.75

1.00

A
(n=82)

B
(n=297)

C
(n=138)

D
(n=32)

Datasets (N=549)

M
ea

n 
C

N
V

 g
en

ot
yp

e 
pr

op
or

tio
ns CNV

genotypes

CN8

CN7

CN6

CN5

CN4

CN3

CN1

CN0

b

Figure 1: Batch effects amongst the 4 datasets contributing to inconsistent distribution of CNV genotypes in the analysis of the combined datasets. (a) PCA based on
normalized read counts per segment showed separation by datasets and 4 outliers. (b) When datasets were combined and analysed together using cn.MOPS (N = 549

after removing PCA outliers), the distribution of CNV genotypes revealed considerable differences among datasets (only autosomal CNVs are depicted here).

consistent among datasets analysed individually (Fig. 2), with
the mean proportion of DELs ranging between 0.55 (SD, 0.08) for
dataset D and 0.61 (SD, 0.09) for dataset B. Additional quality con-
trol (QC) steps were applied to identify problematic samples, de-
fined as those that showed marked deviations (i.e., 1.5 times the
interquartile range away from the first and third quartiles) in the
proportion of DELs or total CNVs discovered within each dataset.
The total number of problematic samples identified were 7, 10,
7, and 3, respectively, for datasets A−D. For dataset A, most of
the problematic samples identified were amongst the lowest
coverage samples (coverage <5×) while for the other datasets
with higher coverage, such a trend was not clearly evident. Plots
per dataset that indicate the proportion of the different CNV
genotypes identified per sample, distributions of CNV genotype
counts, proportion of DELs among CNVs, and total CNVs dis-
covered are provided in Supplemental Figs S2−S5 with prob-
lematic samples labelled. All CNVs called within problematic
samples were removed, which improved the consistency among
datasets, with means of the proportion of DELs ranging between
0.57 (SD, 0.06) for dataset C and 0.60 (SD, 0.07) for dataset B.

The CNVs, from the 519 samples that remained after QC, were
used to construct CNVRs per dataset based on a 50% reciprocal
overlap criterion, consistent with the procedure used elsewhere
[18, 21]. Finally, refined sets of CNVRs were obtained after filter-
ing out CNVRs observed in only 1 sample per dataset. Based on
the genotypes of constituent CNVs, the CNVRs were categorized
as DEL (CN0/CN1), AMP (CN3+), or mixed (MIX) type (1 or more
of CN0/CN1 and CN3+). Dataset-wise hierarchical clustering of
samples based on the CNVR genotypes (representative genotype
of CNVs making up each CNVR; see Methods) revealed clear clus-
tering by breeds (Supplemental Figs S6−S9) as expected.

A list of CNVRs discovered in each dataset with the respective
CNVR category assignments is provided in Supplemental Table
S2. The list consists of a total of 26,223 unique CNVRs, count-
ing those with identical genomic coordinates across datasets
only once. The dataset-wise counts of CNVs and CNVRs and the
non-redundant genome length covered by CNVRs (Table 2) were
all proportional to the sample sizes of the individual datasets.
These relationships were as expected and were also observed at
the breed level (breed-wise summaries of CNVRs are provided

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/8/6/giz073/5523204 by guest on 05 July 2019



4 A large interactive visual database of copy number variants discovered in taurine cattle

0.00

0.25

0.50

0.75

1.00

A
(n=79)

B
(n=297)

C
(n=138)

D
(n=32)

Datasets (N=546)

M
ea

n 
C

N
V

 g
en

ot
yp

e 
pr

op
or

tio
ns CNV

genotypes

CN8

CN7

CN6

CN5

CN4

CN3

CN1

CN0

Figure 2: Distributions of CNV genotypes were more consistent across datasets
that were analysed individually. When datasets were analysed individually (N =
546 after removing PCA outliers and high-coverage outlier samples in dataset A),
the distribution of CNV genotypes was consistent among datasets (only autoso-
mal CNVs are depicted here).

in Supplemental Table S3). Notably, dataset B had the greatest
number of CNVRs in total, which may be attributed to its larger
sample size and diversity of breeds, which included purebreds,
crossbreds, and composites. Conversely, dataset D had the low-
est genome coverage by CNVRs, which may be attributed to the
fact that it comprised only 1 breed and thus less genomic vari-
ability compared with the other datasets with multiple breeds.
These differences amongst datasets were also reflected in the
chromosome-wise counts of total CNVRs of each category where
datasets of larger sample size and breed diversity revealed
higher proportions of MIX category CNVRs (Supplemental Fig.
S10a−d; lower panel). Chromosomes 12, 15, 14, and 29 had com-
paratively higher density of CNVRs (CNVR counts per megabase
over the third quartile in all datasets) than others whereas chro-
mosomes 2, 11, 13, 24, and 22 were amongst the least dense (Sup-
plemental Fig. S10a−d; upper panel). Phenograms representing
the chromosomal locations of CNVRs belonging to the different
categories indicate distinct patterns broadly conserved across
datasets (Supplemental Fig. S11a−d).
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Figure 3: Proportions of overlapping CNVRs amongst datasets. Pairwise compar-

isons of the proportions of CNVRs in each dataset (rows; ordered by dataset size)
that overlap by ≥1 base pair with CNVRs of other larger datasets (columns) are
presented.

Overlaps between CNVRs identified in the 4 datasets
were low when compared with those reported in
previous studies but high between the datasets
themselves

Previous studies that compared CNVRs discovered across stud-
ies reported a low percentage of overlap, which is attributable to
the numerous differences among studies, e.g., sample size and
characteristics, sequencing platform and technology, and CNV
detection algorithm. In cattle, the percentage of overlap among
CNVRs discovered across multiple studies was generally <40%
[3, 18], with overlapping CNVRs defined as those that share ≥1
base position. In agreement, the percentage of overlap between
the CNVRs detected in the 4 datasets of the present study and
those detected in previous studies was generally low, ranging be-
tween 22% and 35% on average (Table 3). A merged list of CNVRs
from the 4 datasets consisted of 9,482 CNVRs (mean CNVR size,
11.363 kb; largest CNVR size, 3.152 Mb), of which, on average,
37% overlapped with the CNVRs identified in previous studies
(Table 3; ABCD). The list was generated by merging overlapping
or adjacent CNVRs across datasets as was performed earlier to
determine the overall non-redundant size of genome covered by
CNVRs (see Table 2). Surprisingly, in another comparison limited
to the 4 datasets, between 70% and 92% of the CNVRs detected
in the smaller datasets (A, C, and D) overlapped with CNVRs in
dataset B, the dataset with the largest sample size and breed
representation (Fig. 3). Despite the differences amongst the 4

Table 2: Dataset-wise summary of CNVs and CNVRs

Dataset
No. post-QC (No. pre-QC) CNVRs per category

(No. of DELs; AMPs;
MIX)

Size of largest
CNVR (kb)

Non-redundant size of
genome (Mb) covered

by CNVRs (%)
Samples CNVs CNVRs

A 72 (79) 35,531 (41,673) 6,864 (11,625) 2,012; 2,660; 2,192 378 53.85430 (2.02)
B 287 (297) 103,040 (117,104) 10,928 (19,139) 2,687; 4,646; 3,595 950 92.48615 (3.48)
C 131 (138) 54,797 (61,050) 8,056 (12,351) 2,522; 2,793; 2,741 501 65.90313 (2.48)
D 29 (32) 17,790 (20,107) 5,749 (8,988) 1,911; 1,845; 1,993 580 44.47765 (1.67)
Summary 519 (546) 157,862 (182,355) 26,223 (44,836) 9,974; 8,302; 9,115 950 107.74670 (4.05)

For the summary, the non-redundant size of genome covered was obtained by merging overlapping or adjacent CNVRs across datasets whereas the numbers of CNVs,
CNVRs, and CNVRs per category were obtained by counting CNVRs with unique genomic coordinates.
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Table 3: Overlaps between CNVRs identified in this study and those from previous published reports

Study Platform No. chr.

No. breeds,
samples, and

CNVRs

% Overlap with CNVRs identified in this study

A B C D ABCD

Fadista et al. [15] CGH-based 29+X 4; 20; 266 12.0 16.9 13.9 11.3 18.0
Liu et al. [16] 29+X 17; 90; 223 65.5 78.0 71.7 57.4 78.9
Hou et al. [22] SNP-based (50K chip) 29 21; 521; 743 35.8 48.0 35.1 30.6 51.1
Bae et al. [23] ∗ 29 1; 265; 224 16.5 29.0 14.3 10.3 33.9
Hou et al. [24] 29 1; 472; 500 21.0 31.8 21.0 16.6 35.6
Jiang et al. [25] 22 1; 2,047; 64 31.2 48.4 25.0 21.9 48.4
Hou et al. [26] SNP-based (HD chip) 29 27; 674; 3,438 19.4 28.4 20.5 15.4 33.0
Wu et al. [27] 29+X 1; 792; 263 38.8 49.8 39.2 29.3 54.4
Bickhart et al. [28] WGS 29 3; 5; 763 10.6 14.4 11.1 9.3 16.0
Zhan et al. [29] 29 1; 1; 419 8.1 11.5 8.4 9.5 13.8
Stothard et al. [17] 26 2; 2; 634 12.3 15.1 13.2 11.7 16.2
Keel et al. [18] 29+X 7; 154; 1,341 60.8 66.4 64.0 56.3 67.2
Chen et al. [19] 29+X 2; 316; 16,325 6.7 10.7 8.1 5.5 12.2
Mean % overlap 26.05 34.49 26.58 21.93 36.82
No. of breeds, samples, and CNVRs identified in this study 5; 72;

6,864
16; 287;
10,928

6; 131;
8,056

1; 29;
5,749

17; 517;
9,482

∗For studies that used the Btau 4.0 assembly for mapping, we used the UCSC liftOver tool [33] to convert the genomic coordinates of the CNVRs to UMD 3.1.

datasets, the high degree of overlap between CVNRs identified
could point to the choice of the CNV detection algorithm being
the factor that contributes most to variability in CNVs discov-
ered across studies.

Identification and genotyping of the well-characterized
KIT locus CNV in our datasets

A CNVR at Chr6:71,747,001–71,752,000, found ∼45 kb upstream
of the KIT gene (Chr6:71,796,318–71,917,431), has been reported
to be associated with the piebald coat colour phenotype in HER
and some SIM cattle [34–36], but not the dorsal spotting on SIM
and HOL cattle or the white patterning on Rouge des Prés [36]
(RDP; formerly called Maine-anjou). Because this was one of the
few breed-associated cattle CNVs with available genotypes de-
scribed in the literature, we looked at whether our analysis pro-
duced consistent breed specificity and genotypes at the KIT lo-
cus CNVR. Overall, we found (Fig. 4) high copy numbers (mostly
CN8) in most HER and moderate to high copy numbers in some
SIM animals (mostly CN4) across all datasets. Datasets A and B
also consisted of a very limited number of a composite breed or
crossbreds with moderate copy numbers at the KIT locus CNVR,
which is likely because those animals may have had SIM or HER
animals in their pedigree. Surprisingly, in dataset B (Fig. 4b),
there were 3 CHA with unexpectedly high CN genotypes and 1
HER with CN2 (30 of the 31 HER cattle with non-CN2 genotypes
are depicted in the figure). Furthermore, 2 of those 3 CHA clus-
tered with HER and the CN2 genotype HER clustered with CHA
in the hierarchical clustering performed on the basis of genome-
wide CNVR genotypes (Supplemental Fig. S7). In an earlier study
[37], a PCA of dataset B samples based on their SNP genotypes
revealed cross-clustering of the same 3 samples, which was at-
tributed to potential issues with sourcing or handling of those
samples. Similarly, in dataset C were an AAN and 2 LIM animals
that showed CN8 genotype and clustered with the HER animals
while 5 HER animals showed CN2 genotype but did not cluster
with the rest of the HER animals in the hierarchical clustering
performed on the basis of genome-wide CNVR genotypes (Sup-
plemental Fig. S7). Manual inspection of the BAM files for those
animals at the KIT locus CNVR indicated that the read coverages

were in agreement with the genotypes predicted by cn.MOPS.
Finally, as expected, the KIT locus CNVR was not detected in
dataset D, which consisted exclusively of HOL animals. Another
CNVR, ∼15 kb in size (Chr6:71,810,000–71,825,000) and located
within intron 1 of the KIT gene, has been reported to be asso-
ciated with the piebald coat color [36]. In our analysis, the only
CNVR that overlaps with this region and that shows amplifica-
tion in the majority of HER and some SIM animals is an 11-kb
CNVR at Chr6:71,808,000–71,819,000, identified only in dataset
B. This CNVR was detected in 25 of the 31 HER (24 as CN3 and 1
as CN8) and 7 of the 34 SIM (all as CN3) individuals in dataset
B. Thus, based on our results, the CNVR at Chr6:71,747,001–
71,752,000 (upstream of the KIT gene) is more clearly associated
with the piebald coat color.

An interactive visual database of CNVRs in taurine
cattle

Studies of CNVs usually report CNVR positions but rarely the
individual genotypes or the boundaries of constituent CNVs
in individual samples, or supportive evidence at the level of
individual CNVRs. Here we provide in-depth characterization
of CNVRs and present the results in a comprehensive interac-
tive database integrated with visualizations of sequence read
alignments, CNV boundaries, and genome features that can be
viewed in a modern web browser (for best results, use a recent
version of Google Chrome or Mozilla Firefox). In doing so, our
strategy better aligns with how we believe the CNVR data will
be used: to investigate genome regions of interest for evidence
of CNVs and to assess each CNVR with available supportive evi-
dence. The key features of this database are represented in Fig. 5
using the KIT locus CNVR in dataset B as an example. An in-
dex page includes overall summary statistics on CNVRs, as well
as custom filtering options for CNVRs and samples. Individual
CNVRs are linked to detailed reports that provide a summary
of the CNVR, graphs of CNVR genotypes per sample and breed,
and visual representations of genome features (i.e., gaps, re-
peats, and segmental duplications), genes, quantitative trait loci
(QTLs), and CNVs overlapping the CNVR. To determine genes
that overlap with CNVRs, we also considered the 5-Mb regions
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Figure 4: Prevalence and genotypes of the KIT locus CNV across breeds and datasets. The breed-wise prevalence and genotypes at CNVR Chr6:71,747,001–71,752,000,
found ∼45 kb upstream of the KIT gene, are depicted here. This CNVR has been reported to be associated with the piebald coat colour phenotype in HER and some SIM
cattle, and occurs in high copy numbers in these breeds. The reason for detection of this CNVR in high copy number in 2 of the 22 CHA cattle in dataset B is attributed
to potential issues with sourcing or handling of the respective samples.

flanking the gene boundaries as part of the gene. Additionally, a
link to the NCBI Genome Data Viewer [38, 39] plots the CNVR re-
gion in the context of the latest annotations and genomics data
available in NCBI for the UMD 3.1.1 bovine reference genome
assembly. Using the viewer, the user can, for example, exam-
ine how RNA sequencing (RNA-Seq) data from a variety of tis-
sues aligns with the region, which in turn can help to establish
the presence or absence of transcribed regions in the vicinity of
the CNVR. One of the most powerful and unique features of the
CNVR database is the ability to view raw read alignments as im-
ages generated using the Integrative Genomics Viewer (IGV) [40,
41]. Images are provided for a random selection of up to 3 rep-
resentative samples for each genotype, enabling assessment of
the validity of the CNV genotypes and refinement of the CNV
boundaries. Furthermore, for autosomal CNVRs, information is
provided for tests on parity and Hardy-Weinberg equilibrium
(HWE) of the CNVR genotypes. The majority of autosomal CN-
VRs (97% for datasets A–C; 91% for dataset D) passed the parity
test (i.e., the combined frequencies of the heterozygote classes
did not exceed that of the homozygote classes). Of the diallelic
autosomal CNVRs that qualified for the HWE test per dataset
(53–57% of the total for the 4 datasets; see Methods), the major-
ity (63–88%) had genotype proportions that were in HWE (χ2 test
P-value ≥ 10−5). In genome-wide association studies, departures
from HWE based on genotypes of SNP markers are considered to
indicate genotyping errors, batch effects, or population stratifi-
cation, and therefore such markers are typically discarded. HWE
results are provided as an additional characteristic/annotation
of CNVRs, but we caution against filtering CNVRs on the basis
of HWE because the test is limited to diallelic autosomal CNVRs
and deviations from HWE could reflect inaccurate genotypes for
an otherwise true CNVR of interest. The CNVR databases per
dataset are available via the GigaDB data repository [42].

Exploring the CNVR databases for variants of interest

We demonstrate the use of the CNVR database and the powerful
interpretations possible through information on genomic fea-
tures and visualization of read coverage at CNVRs. Following the
creation of the CNVR database, and obtaining basic statistics and
summaries of the CNVRs detected in each dataset, we analysed
the database for CNVRs that span well-annotated genes and
found several thousand CNVRs that partially or completely over-
lap genes in the 4 datasets. For example, with default filters for
CNVR length (minimum 1 kb and maximum 3 Mb) and number
of samples in which the CNVR is detected (n = 2), typing “cds del”
in the search box of the “Overlapping Genes” panel for database
A indicates 195 entries where a DEL type CNVR overlaps specifi-

cally with the coding sequence (CDS) of 1 or more genes (Supple-
mental Fig. S12a). Most of those CNVRs also overlap with other
components of a gene such as the untranslated region or intron,
or even extend further upstream or downstream of the gene (see
column “Overlap Type” in the “Overlapping Genes” panel). Se-
lecting the DEL-type CNVR Chr11:6,754,001–6,757,000 that over-
laps with the interleukin 1 receptor type 2 gene (IL1R2) for a de-
tailed view (Supplemental Fig. S12b) indicates that the CNVR
passed the parity test but was not in HWE for genotype pro-
portions. As discussed in the previous section, deviations from
HWE should not be used as a criterion to filter CNVRs; instead
visualization of the read coverage and other supporting informa-
tion at the CNVR available through the CNVR database will help
validate the predicted CNVs. The selected CNVR was detected
in 5 samples, of which 4 were of CN0 and 1 of CN1 genotype
(“Summary” and “Genotypes” panel). Furthermore, the “Over-
laps” panel indicates that the CNV in each of the 5 samples over-
laps completely with the penultimate exon and extends to the
introns on either side of that exon of IL1R2, based on the Ensembl
annotation of the gene. Viewing the affected region in the NCBI
Genome Data Viewer (using the link provided in the report) cor-
roborates the Ensembl gene model and provides additional sup-
port via RNA-Seq exon coverage data (Supplemental Fig. S12c).
The CNVR was also detected in dataset B with a start position 1
kb upstream and in dataset C with an end position 1 kb down-
stream, compared to the coordinates of the CNVR in dataset A.
The CNVR was not detected in dataset D, which consists only of
HOLs, and the breed distribution of the CNVR in dataset B, the
only other dataset with HOLs, supports the absence of this CNVR
in HOLs (Supplemental Fig. S12d). The coverage maps (Supple-
mental Fig. S12e) reveal red-coloured reads at the boundaries of
the CNVR, indicative of a larger than expected insert size, which
is a hallmark of deletions. The coverage maps may also suggest
potential genotyping errors by cn.MOPs. For example, in dataset
C, the sample assigned CN1 appears, based on the absence of
coverage over much of the CNVR, to be CN0. The genotyping may
have gone wrong in this case because the end position of that
CNVR was wrongly predicted to extend by >1 WL into a region
of read coverage, which may have affected the calculation of av-
erage coverage across the CNVR during genotype assignment.
The ability to view the read coverage maps at the CNVR also en-
ables the refinement of the actual boundaries of the CNVR. CNV
detection software that uses read-depth−based algorithms for
CNV detection usually requires a detection window size defined
according to the average depth of sequencing (1 kb window in
the present analysis), and reports CNVR boundaries at the reso-
lution of the window size. A potential improvement that could
be made to the cn.MOPS algorithm is to programmatically re-
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Figure 5: Key features of the functionality of the CNVR database. The database has an index view and a detailed view with an option to enable/disable the help function
on the top right of each page. The index page (a) has a panel (Filters) that allows users to apply filters to the CNVRs such as CNVR length or the number of samples

that must contain the CNVR and the ability to exclude/include specific samples based on regular expression matches. Another panel (Statistics) provides summary
information on the CNVRs before and after applying the filters. The remaining panels on the index page allow users to search and sort on CNVRs, overlapping genes,
and QTLs and/or samples to quickly find CNVRs associated with a particular gene/QTL. All or selected data can be exported as CSV files. CNVRs of interest can be noted
as favorites; and comments can be added for individual CNVRs. All comments, filters, and/or favorites can be saved as a text file that can be reloaded later using the

Settings button options on the top right of the page. Clicking on a CNVR provides a detailed view (b) with panels displaying basic statistics on the CNVR (Summary), a
bar plot of the number of samples per CNV genotype (Genotype distribution), and another bar plot of the number of non-CN2 variants per breed (Breed distribution),
graphical representation of the CNVR in genomic context (Overlapping genes, QTLs, and CNVs), sequence read coverage at the CNVR for up to 3 samples per genotype
(IGV images), a table of all the samples indicating the CNV genotype (CNVR-specific sample list), and finally a sample view that provides, for the selected sample, a

graphical representation of the CNVR and CNV in genomic context with overlapping genes and QTLs.
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8 A large interactive visual database of copy number variants discovered in taurine cattle

solve the CNVR boundaries to a higher resolution in cases where
the read coverage at the CNVR allows it, thereby also improv-
ing genotype prediction. In the case of the CNVR within IL1R2,
analysing the coverage maps helps to exclude the penultimate
exon of that gene as being part of the CNVR because the map
shows evidence of read coverage in all samples and datasets at
that exon; therefore, the CNVR is actually limited to the intron.
Thus, visualization helps to more precisely assess the potential
impacts of the structural variants. It is important to note, how-
ever, that intronic CNVRs can affect phenotypes, for example as
reported for the Pea-comb phenotype in chickens [43]. Another
interesting gene where we detected separate intronic CNVRs
covering 2 different introns of the gene across all datasets was
calpastatin (CAST), wherein multiple SNPs associated with meat
tenderness have been reported in beef cattle [44–49]. Here too,
viewing the coverage map permits higher resolution determina-
tion of the CNVR boundaries (Supplemental Fig. S13a; the first
of the 2 intronic CNVRs within CAST). Furthermore, the pres-
ence of coloured reads at the boundaries of the second intronic
CNVR within CAST, even in samples of non-DEL genotype (Sup-
plemental Fig. S13b), which initially seemed anomalous, could
be explained on the basis of information available through the
genomic features tracks, specifically assembly gaps of known (N)
and unknown (U) sizes in the region of the CNVR boundaries.
The coloured reads in such cases could be reads spanning the
assembly gaps.

Finally, we provide an example where we looked for evidence
of CNVRs at a region in the cattle genome that contains an in-
teresting expanded family of lysozyme genes, which function in
bacteria digestion in the abomasum [50]. A region of ∼0.4 Mb
on Chr5 between 44.35 and 44.75 kb encompasses several mem-
bers of the lysozyme gene family located in tandem (Supple-
mental Fig. S14a). Exploring the CNVR database for dataset B,
we identified 11 CNVRs of AMP or MIX type within the region
of the lysozyme family of genes (Supplemental Fig. S14b). This
example shows how the visualization can help better elucidate
the diversity of component CNVs in a complex CNVR, with CNVs
of differing genotypes occurring within close proximity to each
other and sometimes within the same sample (Supplemental
Fig. S14c), thus allowing for a better functional assessment.

Next, we provide an example of a breed-specific CNVR. While
there were no CNVRs found fixed in all members of a breed, there
were several that were only present in 2 or more members of a
particular breed and absent in all other breeds. The number of
such breed-specific CNVRs found in datasets A, B, and C (dataset
D has only 1 breed and hence was excluded) varied from none in
certain breeds to a few hundred in others (Supplemental Table
S4) and were correlated with the number of samples per breed.
Because our datasets consisted of only 1 dairy breed among the
17 breeds in total, the CNVRs found unique to HOL may indicate
association with traits selected for in dairy cattle in general. For
example, the CNVR Chr11:78,885,001–78,891,000 was found to be
one of the most frequent breed-specific CNVRs in HOL, found in
11 of the 48 HOL in dataset B (all DEL) and 20 of the 32 HOL in
dataset D (7 DEL, 13 AMP). Exploring this CNVR in the databases
for datasets B (Supplemental Fig. S15a) and D (Supplemental Fig.
S15b), the 2 datasets that consisted of HOL, revealed that the
coverage maps from IGV support the CNVR genotypes and the
red-coloured reads at the boundaries of the CN0 and CN1 geno-
type CNVRs further suggest a true deletion. The CNVR overlaps
a known QTL for body weight (weaning) and the first exon of the
Ensembl model for gene MATN3. Further exploration of the gene
region via the link to the NCBI Genome Data Viewer (Supple-
mental Fig. S15c) indicates the following: the CNVR is upstream

of the NCBI model of MATN3 and there is no evidence of RNA-
Seq exon coverage at the region of the first exon in the Ensembl
model of MATN3. This absence of evidence of transcription could
indicate either that the Ensembl model is not accurate or that
the samples that contributed to the RNA-Seq data presented in
the NCBI Genome Data Viewer were collected from a tissue or
stage in life where the first exon of the gene was not transcribed.
A previous study [51] identified a CNVR of almost identical co-
ordinates (Chr11:78,884,928–78,891,111, “BovineCNV3591”) using
Genome STRiP software [52] on WGS data from 22 Hanwoo (a
Korean breed raised for beef) and 10 HOL breeds. The study re-
ported that the CNVR had a higher deletion frequency in HOL
compared to Hanwoo and indicated that the gene MATN3 was
also identified through their analysis of selective sweep signals
based on fixation index (FST) values for measures of population
differentiation.

Visualization of the read coverages at CNVRs can also help
identify potential false-positive calls by cn.MOPS, especially in
regions of low sequencing coverage. In the case of the CNVRs
depicted in Supplemental Fig. S16, the low coverage is clearly at-
tributable to the numerous assembly gaps at the region. Setting
a higher threshold for coverage and removing CNVRs detected
within a certain distance from a known assembly gap may help
resolve some of these cases at the expense of some loss of true-
positive CNVRs. In the future, we plan to implement a filter that
examines consistency of coverage across the window, allowing
for deviations at the ends, to better identify and remove such
cases.

The above examples, together with the example of the CNVR
at the KIT gene locus described earlier (Figs 4 and 5), demon-
strate the value of the CNVR databases created in this study. The
data summaries, visualization of gene features, CNV genotypes,
CNVR boundaries, and read coverages at CNVRs serve as pow-
erful tools to ascertain the veracity and potential phenotype-
altering mechanisms of CNVRs, as well as the prevalence of in-
dividual CNV genotypes among breeds and in the populations
studied.

Discussion

With the ever-reducing costs, WGS has become the method
of choice for many applications involving CNV detection. Soft-
ware to predict CNVs has also evolved, and methods that rely
on multi-sample read-depth analyses, like cn.MOPS, have be-
come popular owing to their superior ability to control for false-
discovery rate [32]. Furthermore, a recent study on simulated
data has reported read-depth−based approaches to perform rel-
atively better than those based on paired-end and split-read
analyses when analysing datasets composed of samples se-
quenced at varying levels of coverage [18, 21]. Using cn.MOPS,
we analysed each of 4 WGS datasets, which together represent
>500 bulls from 17 taurine cattle breeds. Besides CNV detection,
cn.MOPS provides integer copy number genotypes to indicate
the level of deletion or amplification at the predicted CNVs. We
did not use the built-in function within cn.MOPS to construct
CNVRs and assign CNVR genotypes because we found that this
approach can produce very large CNVRs that obscure the under-
lying breakpoint diversity across samples and that have geno-
type assignments that are not always consistent with the major-
ity genotype observed among the constituent CNVs. We there-
fore used a 50% pairwise reciprocal overlap criterion to construct
CNVRs, as has been used in other studies [18, 21], and then as-
signed genotypes on the basis of a set of rules as described in
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the Methods section. The assigned CNVR genotypes indicated
clear separation of breeds by hierarchical clustering and also
confirmed previously reported differences in the amplification
levels at the KIT locus CNVR between Simmental and Here-
ford breeds. In future work, individual CNVR genotypes could
be used in association analyses aimed at investigating the rela-
tionship between copy number and phenotype. In addition, we
provide detailed annotation including sequencing read coverage
for each CNVR in multiple samples representing the different
genotypes identified. All results are presented in a unique inter-
active visual database that enables the user to assess each CNVR
based on sequence read alignments and to examine the bound-
aries of constituent CNVs in individual samples. Read coverage
and alignments within and adjacent to a CNVR can aid in the de-
termination of the breakpoints of constituent CNVs in individ-
ual samples because the resolution of the breakpoints reported
by the cn.MOPS algorithm is limited to the choice of window
size used for CNV detection. The visualization of genome fea-
tures such as assembly gaps and repeats can highlight potential
non−CNV-related coverage and alignment anomalies and thus
can further be used in the assessment of predicted CNVs and
their breakpoints. We believe that the way we present our re-
sults in the CNVR database better aligns with how this informa-
tion will be used, i.e., to investigate genomic regions or genes
of interest for evidence of CNVs; such information is not avail-
able at a genome-wide scale in any of the previously published
reports on CNVRs in any species.

An important outcome from the present study was the ne-
cessity to address batch effects that could affect the reliability
of CNVs predicted using algorithms that model read count vari-
ations across samples. The batch effects arise from genomic re-
gions of imbalanced coverage across sequence datasets gener-
ated from different platforms and technologies. While the batch
effects could potentially be controlled to an extent by including
only those genomic regions that have adequate coverage across
datasets, such an approach would have resulted in losing valu-
able information on CNVRs from individual datasets that had
sufficient coverage at those regions. These observations guided
our decision to analyse individual datasets separately.

One limitation of the present study was that some of the
breeds had low sample representation; the PIE, RDP, and BBL
breeds had <10 samples each while the BAQ, DEV, and SAL
breeds had only 1 sample each. Therefore, the breadth of breed-
specific CNVRs reported is not as complete for those breeds as
are those for the more popular breeds with greater sample rep-
resentation in the present study. Nevertheless, CNVRs in some
of those breeds with smaller representation (e.g., DEV, SAL, BBL)
have not been studied or reported earlier at a genome-wide
scale, making this study amongst the first to do so in those
breeds. Another limitation of the present study is that CNVRs
shorter than 3,000 bp are not reported, which was the limit we
set for the dataset-wise analyses based on the sequencing cov-
erage of samples in the dataset with the lowest mean coverage.

Conclusion

This study presents a comprehensive collection of CNVRs in tau-
rine cattle, which can serve as a reference on the locations of
CNVRs and their genotype frequencies in a broad range of cat-
tle breeds. The visualizations and annotations included in the
interactive databases greatly facilitate assessment of individual
CNVRs and should aid the efforts to identify CNVRs that in-
fluence phenotype. We recommend that visualization of read

coverage at predicted CNVRs be a standard protocol in stud-
ies reporting specific CNVRs of interest (e.g., near to a gene or
genome region highlighted through some other research activi-
ties) among CNVRs identified on a genome-wide scale. Given the
issue of false-positive calls inherent to any prediction algorithm
and the impracticality of experimental validation for CNVRs at a
genome-wide scale, read coverage visualization at CNVRs offers
a powerful way not only to overcome those issues but also to
refine the CNVR boundaries, among other advantages. Further-
more, we suggest integrating the NCBI Genome Data Viewer into
analysis workflows as a way of assessing the NCBI and Ensembl
gene models and their supporting evidence (e.g., RNA-Seq reads)
when examining how CNVRs overlap with genome features.

Methods
Sequence data

The WGS datasets were generated in 4 different projects, which
together comprised 553 samples representing 1 taurine dairy
cattle breed and 16 taurine beef cattle breeds (Table 1 and Sup-
plemental Table S1). The sequence data were generated fol-
lowing guidelines provided by the 1000 bull genomes project
[52, 53]. Details on animal selection, sequence generation, and
further analyses performed on datasets A and B have been
published earlier [37, 54]. Briefly, DNA samples were extracted
from commercial artificial insemination bull semen straws and
sequenced using either the 5500xl SOLiDTM system (85 ani-
mals) or the HiSeqTM 2000 system (298 animals). Reads that
passed standard quality-based filtering criteria were aligned to
the UMD 3.1 bovine reference genome assembly [55] using the
BWA-backtrack algorithm of Burrows-Wheeler Aligner (BWA,
RRID:SCR 010910) [56] version 0.5.9. Local realignment of reads
around indels was performed using the IndelRealigner tool of
the Genome Analysis Toolkit (GATK) [57] version 2.4, and dupli-
cate reads marked using the MarkDuplicates tool of the Picard
toolkit version 1.54 [58]. Details on animal selection, sequence
generation, and further analyses performed on datasets C and
D were similar to those for the previous datasets except for us-
ing more recent versions of the following software: BWA version
0.7.15 for dataset C and version 0.7.12 for dataset D, both using
BWA-MEM algorithm; GATK version 3.5; and Picard toolkit ver-
sion 2.0.1.

Identification of CNVs from sequence data

Detection of CNVs in the sequence data was performed using
the Bioconductor [59] (version 3.6) package cn.MOPS (cn.mops,
RRID:SCR 013036) [32] (version 1.24.0) of the R (version 3.4.3)
statistical programming language [60] running on a CentOS 7
Linux server with default cn.MOPS parameters except the fol-
lowing: WL 1000 bp and rmdup enabled to count only 1 read for
each unique combination of position, strand, and read width.
CNVs were reported if 3 adjacent windows showed significant
read-depth variations, thereby enabling the detection of CNVs
of length ≥3,000 bp in increments of 1,000 bp.

Constructing CNVRs from CNVs

In cn.MOPS, CNVRs are constructed from CNVs by merging over-
lapping and adjacent CNVs using the ”reduce” function from the
Bioconductor package “GenomicRanges.” An initial test run on
dataset A using that approach resulted in abnormally large CN-
VRs. Hence, we followed a more conservative approach to merge
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CNVs to CNVRs similar to what was used in some previous stud-
ies [18, 21] in which CNVRs were constructed by merging only
those CNVs across samples that satisfied a 50% pairwise recip-
rocal overlap criterion based on their genomic coordinates.

Assigning genotypes to CNVRs

By default, cn.MOPS assigns CNVR genotypes for each sample
based on the genotypes of the CNVs making up each CNVR.
While the default approach worked well for the majority of
cases, the selected genotype was not representative for 2.37%
to 6.18% of the CNVRs across datasets where multiple dis-
crete CNVs of differing genotypes occurred in certain individ-
ual samples. Such cases were observed more frequently for
larger CNVRs. To assign CNVR genotypes, we used the genotype
of the CNV type with the largest aggregate width amongst all
CNV types making up the CNVR; in case of ties, we assigned
the genotype that was closer to CN2. The corrected genotypes
were used to perform genotype-based hierarchical clustering
of samples (using the hclust function in R with the Spearman
correlation–based distance measure and the ward.D2 agglomer-
ation method). Another issue with genotype assignment to CN-
VRs is associated with the 50% reciprocal overlap criterion that
allows creation of overlapping CNVRs. In general, a CN2 geno-
type is assigned to samples where a CNV is not detected in a par-
ticular CNVR; however, it is possible that the same sample may
have a CNV of non-CN2 genotype detected on an overlapping
CNVR. Therefore, we performed a CN2 correction as follows: for
each test CNVR, the genotypes of samples for which cn.MOPS
did not detect a CNV were changed from the default CN2 to CN
in cases where a CNV was detected for that sample in another
CNVR that overlapped with the test CNVR. The genotypes sub-
sequently obtained were used for all summary calculations and
plots created in the CNVR database.

Annotation of CNVRs

The CNVRs were annotated for genes based on information ob-
tained from Ensembl (Ensembl, RRID:SCR 002344) [61, 62] Re-
lease 88 (Bos taurus.UMD3.1.88.gff3) and for cattle QTLs (99,652
QTLs) from Animal QTLdb (Animal QTLdb, RRID:SCR 001748) [63]
Release 33 (Aug 26, 2017) [64]. Information on segmental dupli-
cations in bovines was retrieved from sheet 1 of additional file 3
(Table S3.1–7) of a previous study [65] whereas assembly gaps
and repeats were obtained for Bos taurus UMD 3.1/bosTau6
(Nov. 2009) assembly University of California Santa Cruz (UCSC)
genome table browser [66].

Hardy-Weinberg equilibrium (HWE) test on CNVR
genotypes

We performed Pearson’s χ2 tests for goodness of fit of CNVR
genotype proportions to HWE [67] at diallelic autosomal CN-
VRs with either a combination of CN0, CN1, and CN2 genotypes
(considered as minor-allele homozygous, heterozygous, and ref-
erence homozygous) or CN2, CN3, and CN4 genotypes (con-
sidered as reference homozygous, heterozygous, and minor-
allele homozygous), similar to a previous study [68]. The test
was performed using the “HardyWeinberg” package [69] in R.
Multi-allelic CNVR genotypes were not tested for HWE here
because of the inability to determine what combination of
alleles were responsible for a particular genotype. Further-
more, at all autosomal CNVRs, a parity test [70] was per-
formed to test whether the number of individuals that have

even CNVR genotypes (CN0, CN2, CN4, and CN8) exceed the
number of individuals with odd CNVR genotypes (CN1, CN3,
CN5, and CN7), an extension of the observation in SNP geno-
types that, at HWE, the combined frequencies of the ho-
mozygote classes should exceed those of the heterozygote
classes.

Availability of supporting data and materials

Raw sequence data for datasets A and B are available
from Sequence Read Archive (SRA) accessions SRP017441 and
SRP044884. Aligned sequence data for 4 samples from dataset
B (indicated in Supplemental Table S1) are available from SRA
accession SRP017441 whereas those for the rest are available in
the GigaScience GigaDB database [71]. Both raw and aligned se-
quence data for datasets C and D are available from SRA acces-
sions SRP150844 and SRP153409 respectively. All supporting data
and materials from this study including the CNVR databases per
dataset are available in the GigaScience GigaDB database [42] or
as Supplemental Files.

Additional files

Figure S1: Sample-wise sequencing coverages per dataset.
Figures S2–S5: Proportions of the different CNV genotypes iden-
tified per sample (a), distributions of CNV genotype counts (b),
proportions of DELs among CNVs (c), and total CNVs discovered
(d) per dataset.
Figures S6–S9: Hierarchical clustering of samples based on the
CNVR genotypes per dataset.
Figure S10: Chromosome-wise counts of total CNVRs and CNVRs
per category (DEL, AMP, MIX) for datasets A (a), B (b), C (c), and D
(d).
Figure S11: Phenograms representing the chromosomal loca-
tions of CNVRs belonging to the different categories for datasets
A (a), B (b), C (c), and D (d).
Figures S12–S16: Specific examples to depict exploration of the
CNVR databases for variants of interest.
Table S1: Detailed information on samples and sources of se-
quence data.
Table S2: List of CNVRs discovered in each dataset with the re-
spective CNVR category assignments.
Table S3: Breed-wise summaries of CNVRs identified per
dataset.
Table S4: Breed-specific CNVRs found in datasets A, B, and C.
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