51 research outputs found

    Environmental Regulation Can Arise Under Minimal Assumptions

    No full text
    Models that demonstrate environmental regulation as a consequence of organism and environment coupling all require a number of core assumptions. Many previous models, such as Daisyworld, require that certain environment-altering traits have a selective advantage when those traits also contribute towards global regulation. We present a model that results in the regulation of a global environmental resource through niche construction without employing this and other common assumptions. There is no predetermined environmental optimum towards which regulation should proceed assumed or coded into the model. Nevertheless, polymorphic stable states that resist perturbation emerge from the simulated co-evolution of organisms and environment. In any single simulation a series of different stable states are realised, punctuated by rapid transitions. Regulation is achieved through two main subpopulations that are adapted to slightly different resource values, which force the environmental resource in opposing directions. This maintains the resource within a comparatively narrow band over a wide range of external perturbations. Population driven oscillations in the resource appear to be instrumental in protecting the regulation against mutations that would otherwise destroy it. Sensitivity analysis shows that the regulation is robust to mutation and to a wide range of parameter settings. Given the minimal assumptions employed, the results could reveal a mechanism capable of environmental regulation through the by-products of organisms

    Atomic collisional data for neutral beam modeling in fusion plasmas

    Get PDF
    The injection of energetic neutral particles into the plasma of magnetic confinement fusion reactors is a widely-accepted method for heating such plasmas; various types of neutral beam are also used for diagnostic purposes. Accurate atomic data are required to properly model beam penetration into the plasma and to interpret photoemission spectra from both the beam particles themselves (e.g. beam emission spectroscopy) and from plasma impurities with which they interact (e.g. charge exchange recombination spectroscopy). This paper reviews and compares theoretical methods for calculating ionization, excitation and charge exchange cross sections applied to several important processes relevant to neutral hydrogen beams, including H + Be4+ and H + H+. In particular, a new cross section for the proton-impact ionization of H (1s) is recommended which is significantly larger than that previously accepted at fusion-relevant energies. Coefficients for an empirical fit function to this cross section and to that of the first excited states of H are provided and uncertainties estimated. The propagation of uncertainties in this cross section in modeling codes under JET-like conditions has been studied and the newly-recommended values determined to have a significant effect on the predicted beam attenuation. In addition to accurate calculations of collisional atomic data, the use of these data in codes modeling beam penetration and photoemission for fusion-relevant plasma density and temperature profiles is discussed. In particular, the discrepancies in the modeling of impurities are reported. The present paper originates from a Coordinated Research Project (CRP) on the topic of fundamental atomic data for neutral beam modeling that the International Atomic Energy Agency (IAEA) ran from 2017 to 2022; this project brought together ten research groups in the fields of fusion plasma modeling and collisional cross section calculations. Data calculated during the CRP is summarized in an appendix and is available online in the IAEA’s atomic database, CollisionDB

    The epitaxy of gold

    Full text link
    corecore