1,610 research outputs found
Proximity effect in granular superconductor-normal metal structures
We fabricated three-dimensional disordered Pb-Cu granular structures, with
various metal compositions. The typical grain size of both metals is smaller
than the superconductor and normal metal coherence lengths, thus satisfying the
Cooper limit. The critical temperature of the samples was measured and compared
with the critical temperature of bilayers. We show how the proximity effect
theories, developed for bilayers, can be modified for random mixtures and we
demonstrate that our experimental data fit well the de Gennes weak coupling
limit theory in the Cooper limit. Our results indicate that, in granular
structures, the Cooper limit can be satisfied over a wide range of
concentrations.Comment: 15 pages, 4 figure
Hole-burning experiments within solvable glassy models
We reproduce the results of non-resonant spectral hole-burning experiments
with fully-connected (equivalently infinite-dimensional) glassy models that are
generalizations of the mode-coupling approach to nonequilibrium situations. We
show that an ac-field modifies the integrated linear response and the
correlation function in a way that depends on the amplitude and frequency of
the pumping field. We study the effect of the waiting and recovery-times and
the number of oscillations applied. This calculation will help descriminating
which results can and which cannot be attributed to dynamic heterogeneities in
real systems.Comment: 4 pages, 8 figures, RevTe
Dimensional structure of bodily panic attack symptoms and their specific connections to panic cognitions, anxiety sensitivity and claustrophobic fears
Background. Previous studies of the dimensional structure of panic attack symptoms have mostly identified a respiratory and a vestibular/mixed somatic dimension. Evidence for additional dimensions such as a cardiac dimension and the allocation of several of the panic attack symptom criteria is less consistent. Clarifying the dimensional structure of the panic attack symptoms should help to specify the relationship of potential risk factors like anxiety sensitivity and fear of suffocation to the experience of panic attacks and the development of panic disorder.
Method. In an outpatient multicentre study 350 panic patients with agoraphobia rated the intensity of each of the ten DSM-IV bodily symptoms during a typical panic attack. The factor structure of these data was investigated with nonlinear confirmatory factor analysis (CFA). The identified bodily symptom dimensions were related to panic cognitions, anxiety sensitivity and fear of suffocation by means of nonlinear structural equation modelling (SEM).
Results. CFA indicated a respiratory, a vestibular/mixed somatic and a cardiac dimension of the bodily symptom criteria. These three factors were differentially associated with specific panic cognitions, different anxiety sensitivity facets and suffocation fear.
Conclusions. Taking into account the dimensional structure of panic attack symptoms may help to increase the specificity of the associations between the experience of panic attack symptoms and various panic related constructs
converging evidence from an intermediate phenotype approach
Representing a phylogenetically old and very basic mechanism of inhibitory
neurotransmission, glycine receptors have been implicated in the modulation of
behavioral components underlying defensive responding toward threat. As one of
the first findings being confirmed by genome-wide association studies for the
phenotype of panic disorder and agoraphobia, allelic variation in a gene
coding for the glycine receptor beta subunit (GLRB) has recently been
associated with increased neural fear network activation and enhanced acoustic
startle reflexes. On the basis of two independent healthy control samples, we
here aimed to further explore the functional significance of the GLRB genotype
(rs7688285) by employing an intermediate phenotype approach. We focused on the
phenotype of defensive system reactivity across the levels of brain function,
structure, and physiology. Converging evidence across both samples was found
for increased neurofunctional activation in the (anterior) insular cortex in
GLRB risk allele carriers and altered fear conditioning as a function of
genotype. The robustness of GLRB effects is demonstrated by consistent
findings across different experimental fear conditioning paradigms and
recording sites. Altogether, findings provide translational evidence for
glycine neurotransmission as a modulator of the brain’s evolutionary old
dynamic defensive system and provide further support for a strong,
biologically plausible candidate intermediate phenotype of defensive
reactivity. As such, glycine-dependent neurotransmission may open up new
avenues for mechanistic research on the etiopathogenesis of fear and anxiety
disorders
IUCN Conservation Status Does Not Predict Glucocortoid Concentrations in Reptiles and Birds
Circulating glucocorticoids (GCs) are the most commonly used biomarkers of stress in wildlife. However, their utility as a tool for identifying and/or managing at-risk species has varied. Here, we took a very broad approach to conservation physiology, asking whether International Union for the Conservation of Nature (IUCN) listing status (concern versus no obvious concern) and/or location within a geographic range (edge versus non-edge) predicted baseline and post-restraint concentrations of corticosterone (CORT) among many species of birds and reptiles. Even though such an approach can be viewed as coarse, we asked in this analysis whether CORT concentrations might be useful to implicate species at risk. Indeed, our effort, relying on HormoneBase, a repository of data on wildlife steroids, complements several other large-scale efforts in this issue to describe and understand GC variation. Using a phylogenetically informed Bayesian approach, we found little evidence that either IUCN status or edge/non-edge location in a geographic distribution were related to GC levels. However, we did confirm patterns described in previous studies, namely that breeding condition and evolutionary relatedness among species predicted some GC variation. Given the broad scope of our work, we are reluctant to conclude that IUCN status and location within a range are unrelated to GC regulation. We encourage future more targeted efforts on GCs in at-risk populations to reveal how factors leading to IUCN listing or the environmental conditions at range edges impact individual performance and fitness, particularly in the mammals, amphibians, and fish species we could not study here because data are currently unavailable
Anisotropic optical properties of single-crystal GdBa2Cu3O7-delta
The optical spectrum of reduced-T(c) GdBa2Cu3O7-delta has been measured for polarizations parallel and perpendicular to the ab plane. The sample was an oxygen-deficient single crystal with a large face containing the c axis. The polarized reflectance from this face was measured from 20-300 K in the spectral region from 30-3000 cm-1, with 300 K data to 30 000 cm-1. Kramers-Kronig analysis was used to determine the spectral dependence of the ab and the c components of the dielectric tensor. The optical properties are strongly anisotropic. The ab-plane response resembles that of other reduced-T(c) materials whereas the c axis, in contrast, shows only the presence of several phonons. There is a complete absence of charge carrier response along c above and below T(c). This observation allows us to set an upper limit to the free-carrier spectral weight for transport perpendicular to the CuO2 planes
HormoneBase, a Population-Level Database of Steroid Hormone Levels Across Vertebrates
Hormones are central regulators of organismal function and flexibility that mediate a diversity of phenotypic traits from early development through senescence. Yet despite these important roles, basic questions about how and why hormone systems vary within and across species remain unanswered. Here we describe HormoneBase, a database of circulating steroid hormone levels and their variation across vertebrates. This database aims to provide all available data on the mean, variation, and range of plasma glucocorticoids (both baseline and stress-induced) and androgens in free-living and un-manipulated adult vertebrates. HormoneBase (www.HormoneBase.org) currently includes \u3e6,580 entries from 476 species, reported in 648 publications from 1967 to 2015, and unpublished datasets. Entries are associated with data on the species and population, sex, year and month of study, geographic coordinates, life history stage, method and latency of hormone sampling, and analysis technique. This novel resource could be used for analyses of the function and evolution of hormone systems, and the relationships between hormonal variation and a variety of processes including phenotypic variation, fitness, and species distributions
In-plane polarized collective modes in detwinned YBaCuO observed by spectral ellipsometry
The in-plane dielectric response of detwinned YBaCuO has
been studied by far-infared ellipsometry. A surprisingly lare number of
in-plane polarized modes are observed. Some of them correspond to pure phonon
modes. Others posses a large electronic contribution which strongly increases
in the superconducting state. The free carrier response and the collective
modes exhibit a pronounced a-b anisotropy. We discuss our results in terms of a
CDW state in the 1-d CuO chains and induced charge density fluctuations within
the 2-d CuO planes
Metabolic Scaling of Stress Hormones in Vertebrates
Glucocorticoids (GCs) are stress hormones that can strongly influence physiology, behavior, and an organism’s ability to cope with environmental change. Despite their importance, and the wealth of studies that have sought to understand how and why GC concentrations vary within species, we do not have a clear understanding of how circulating GC levels vary within and across the major vertebrate clades. New research has proposed that much interspecific variation in GC concentrations can be explained by variation in metabolism and body mass. Specifically, GC concentrations should vary proportionally with mass-specific metabolic rates and, given known scaling relationships between body mass and metabolic rate, GC concentrations should scale to the -1/4 power of body mass and to the power of 1 with mass-specific metabolic rate. Here, we use HormoneBase, the newly compiled database that includes plasma GC concentrations from free-living and unmanipulated vertebrates, to evaluate this hypothesis. Specifically, we explored the relationships between body mass or mass-specific metabolic rate and either baseline or stress-induced GC (cortisol or corticosterone) concentrations in tetrapods. Our phylogenetically-informed models suggest that, whereas the relationship between GC concentrations and body mass across tetrapods and among mammals is close to -1/4 power, this relationship does not exist in amphibians, reptiles, and birds. Moreover, with the exception of a positive association between stress-induced GC concentrations and mass-specific metabolic rate in birds, we found little evidence that GC concentrations are linked to metabolic rate, although the number of species sampled was quite limited for amphibians and somewhat so for reptiles and mammals. Nevertheless, these results stand in contrast to the generally accepted association between the two and suggest that our observed positive association between body mass and GC concentrations may not be due to the well-established link between mass and metabolism. Large-scale comparative approaches can come with drawbacks, such as pooling and pairing observations from separate sources. However, these broad analyses provide an important counterbalance to the majority of studies examining variation in GC concentrations at the population or species level, and can be a powerful approach to testing both long-standing and new questions in biology
- …