46 research outputs found

    AGENTS OF PLANETARY GEOMORPHIC CHANGE: MARTIAN AEOLIAN MORPHODYNAMICS AND THE EMPLACEMENT OF CRATER EJECTA

    Get PDF
    High resolution images of planetary surfaces, such as of Mars from the High Resolution Imaging Science Experiment (HiRISE) camera, reveal a landscape shaped by wind and impact cratering. Wind is the most formative geologic agent on Mars today and impact cratering is the most pervasive geologic process over the lifetime of the Solar System’s solid worlds. In this thesis, I examine the geomorphology and morphodynamics of aeolian geology on Mars and the emplacement of impact crater ejecta on solid worlds with an eye toward the Moon. I provide an introduction to these topics and planets in Chapter 1. In Chapter 2, I present a model for predicting sand flux changes downwind within a dune field by invoking internal boundary layer flow and topographic wind speed changes. These predictions are consistent with measured sand fluxes and changes in dune geomorphology as a function of downwind distance. Chapter 3 builds off this work to explain the existence of Martian sand sheets as deriving from erosion via sand suspension of upwind dunes, in contrast to Earth’s dunes and sheets. These results and insights were facilitated by atmospheric circulation models combined with automatic and manual ripple and dune change detection methods. Chapter 4 unveils a new method for studying the dynamics and resulting geomorphology of the emplacement of impact crater ejecta. Along with presenting this new method, I also present geologic results from the initial experiments which reveal ejecta emplacement to be both erosive and depositional, analogous to terrestrial debris flows. The consequences of heterogeneous ejecta emplacement provide an interpretive framework for analyzing spectral datasets, samples, and stratigraphic relations for the Moon and other solid worlds

    Moons Are Planets: Scientific Usefulness Versus Cultural Teleology in the Taxonomy of Planetary Science

    Full text link
    We argue that taxonomical concept development is vital for planetary science as in all branches of science, but its importance has been obscured by unique historical developments. The literature shows that the concept of planet developed by scientists during the Copernican Revolution was theory-laden and pragmatic for science. It included both primaries and satellites as planets due to their common intrinsic, geological characteristics. About two centuries later the non-scientific public had just adopted heliocentrism and was motivated to preserve elements of geocentrism including teleology and the assumptions of astrology. This motivated development of a folk concept of planet that contradicted the scientific view. The folk taxonomy was based on what an object orbits, making satellites out to be non-planets and ignoring most asteroids. Astronomers continued to keep primaries and moons classed together as planets and continued teaching that taxonomy until the 1920s. The astronomical community lost interest in planets ca. 1910 to 1955 and during that period complacently accepted the folk concept. Enough time has now elapsed so that modern astronomers forgot this history and rewrote it to claim that the folk taxonomy is the one that was created by the Copernican scientists. Starting ca. 1960 when spacecraft missions were developed to send back detailed new data, there was an explosion of publishing about planets including the satellites, leading to revival of the Copernican planet concept. We present evidence that taxonomical alignment with geological complexity is the most useful scientific taxonomy for planets. It is this complexity of both primary and secondary planets that is a key part of the chain of origins for life in the cosmos.Comment: 68 pages, 16 figures. For supplemental data files, see https://www.philipmetzger.com/moons_are_planets

    Cryovolcanic flooding in Viking Terra on Pluto

    Get PDF
    A prominent fossa trough (Uncama Fossa) and adjacent 28-km diameter impact crater (Hardie) in Pluto's Viking Terra, as seen in the high-resolution images from the New Horizons spacecraft, show morphological evidence of in-filling with a material of uniform texture and red-brown color. A linear fissure parallel to the trough may be the source of a fountaining event yielding a cryoclastic deposit having the same composition and color properties as is found in the trough and crater. Spectral maps of this region with the New Horizons LEISA instrument reveal the spectral signature of H₂O ice in these structures and in distributed patches in the adjacent terrain in Viking Terra. A detailed statistical analysis of the spectral maps shows that the colored H₂O ice filling material also carries the 2.2-μm signature of an ammoniated component that may be an ammonia hydrate (NH₃nH₂O) or an ammoniated salt. This paper advances the view that the crater and fossa trough have been flooded by a cryolava debouched from Pluto's interior along fault lines in the trough and in the floor of the impact crater. The now frozen cryolava consisted of liquid H₂O infused with the red-brown pigment presumed to be a tholin, and one or more ammoniated compounds. Although the abundances of the pigment and ammoniated compounds entrained in, or possibly covering, the H₂O ice are unknown, the strong spectral bands of the H₂O ice are clearly visible. In consideration of the factors in Pluto's space environment that are known to destroy ammonia and ammonia-water mixtures, the age of the exposure is of order ≤10⁹ years. Ammoniated salts may be more robust, and laboratory investigations of these compounds are needed

    Cryovolcanic flooding in Viking Terra on Pluto

    Get PDF
    A prominent fossa trough (Uncama Fossa) and adjacent 28-km diameter impact crater (Hardie) in Pluto's Viking Terra, as seen in the high-resolution images from the New Horizons spacecraft, show morphological evidence of in-filling with a material of uniform texture and red-brown color. A linear fissure parallel to the trough may be the source of a fountaining event yielding a cryoclastic deposit having the same composition and color properties as is found in the trough and crater. Spectral maps of this region with the New Horizons LEISA instrument reveal the spectral signature of H₂O ice in these structures and in distributed patches in the adjacent terrain in Viking Terra. A detailed statistical analysis of the spectral maps shows that the colored H₂O ice filling material also carries the 2.2-μm signature of an ammoniated component that may be an ammonia hydrate (NH₃nH₂O) or an ammoniated salt. This paper advances the view that the crater and fossa trough have been flooded by a cryolava debouched from Pluto's interior along fault lines in the trough and in the floor of the impact crater. The now frozen cryolava consisted of liquid H₂O infused with the red-brown pigment presumed to be a tholin, and one or more ammoniated compounds. Although the abundances of the pigment and ammoniated compounds entrained in, or possibly covering, the H₂O ice are unknown, the strong spectral bands of the H₂O ice are clearly visible. In consideration of the factors in Pluto's space environment that are known to destroy ammonia and ammonia-water mixtures, the age of the exposure is of order ≤10⁹ years. Ammoniated salts may be more robust, and laboratory investigations of these compounds are needed

    The nature and origin of Charon's smooth plains

    Get PDF
    Charon displays extensive plains that cover the equatorial area and south to the terminator on the sub-Pluto hemisphere observed by New Horizons. We hypothesize that these plains are a result of Charon's global extension and early subsurface ocean yielding a large cryoflow that completely resurfaced this area leaving the plains and other features that we observe today. The cryoflow consisted of ammonia-rich material, and could have resurfaced this area either by cryovolcanic effusion similar to lunar maria emplacement or a mechanism similar to magmatic stoping where lithospheric blocks foundered. Geological observations, modeling of possible flow rheology, and an analysis of rille orientations support these hypotheses

    New Frontiers-class Uranus Orbiter: Exploring the feasibility of achieving multidisciplinary science with a mid-scale mission

    Get PDF
    n/
    corecore