13 research outputs found

    Blood Parasite Load as an Early Marker to Predict Treatment Response in Visceral Leishmaniasis in Eastern Africa

    Get PDF
    Background: To expedite the development of new oral treatment regimens for visceral leishmaniasis (VL), there is a need for early markers to evaluate treatment response and predict long-term outcomes. Methods: Data from 3 clinical trials were combined in this study, in which Eastern African VL patients received various antileishmanial therapies. Leishmania kinetoplast DNA was quantified in whole blood with real-time quantitative polymerase chain reaction (qPCR) before, during, and up to 6 months after treatment. The predictive performance of pharmacodynamic parameters for clinical relapse was evaluated using receiver-operating characteristic curves. Clinical trial simulations were performed to determine the power associated with the use of blood parasite load as a surrogate endpoint to predict clinical outcome at 6 months. Results: The absolute parasite density on day 56 after start of treatment was found to be a highly sensitive predictor of relapse within 6 months of follow-up at a cutoff of 20 parasites/mL (area under the curve 0.92, specificity 0.91, sensitivity 0.89). Blood parasite loads correlated well with tissue parasite loads (ρ = 0.80) and with microscopy gradings of bone marrow and spleen aspirate smears. Clinical trial simulations indicated a > 80% power to detect a difference in cure rate between treatment regimens if this difference was high (> 50%) and when minimally 30 patients were included per regimen. Conclusions: Blood Leishmania parasite load determined by qPCR is a promising early biomarker to predict relapse in VL patients. Once optimized, it might be useful in dose finding studies of new chemical entities.This work was supported by the European Union Seventh Framework Programme Africoleish (grant number 305178); the World Health Organization—Special Programme for Research and Training in Tropical Diseases (WHO-TDR); the French Development Agency, France (grant number CZZ2062); UK aid, UK; the Federal Ministry of Education and Research through KfW, Germany; the Medicor Foundation, Liechtenstein; Médecins Sans Frontières, International; the Swiss Agency for Development and Cooperation (SDC), Switzerland (grant number 81017718); the Dutch Ministry of Foreign Affairs (DGIS), the Netherlands (grant number PDP15CH21); the French Ministry for Europe and Foreign Affairs (MEAE), France; The Rockefeller Foundation, USA; BBVA Foundation, Spain; the European Union—AfriKADIA project of the Second European and Developing Countries Clinical Trials Partnership Programme (EDCTP2) (grant number RIA2016S1635); and ZonMw/Dutch Research Council (NWO) Veni grant (project number 91617140 to T. P. C. D.).S

    Efficacy and Safety of AmBisome in Combination with Sodium Stibogluconate or Miltefosine and Miltefosine Monotherapy for African Visceral Leishmaniasis: Phase II Randomized Trial.

    Get PDF
    BACKGROUND: SSG&PM over 17 days is recommended as first line treatment for visceral leishmaniasis in eastern Africa, but is painful and requires hospitalization. Combination regimens including AmBisome and miltefosine are safe and effective in India, but there are no published data from trials of combination therapies including these drugs from Africa. METHODS: A phase II open-label, non-comparative randomized trial was conducted in Sudan and Kenya to evaluate the efficacy and safety of three treatment regimens: 10 mg/kg single dose AmBisome plus 10 days of SSG (20 mg/kg/day), 10 mg/kg single dose AmBisome plus 10 days of miltefosine (2.5mg/kg/day) and miltefosine alone (2.5 mg/kg/day for 28 days). The primary endpoint was initial parasitological cure at Day 28, and secondary endpoints included definitive cure at Day 210, and pharmacokinetic (miltefosine) and pharmacodynamic assessments. RESULTS: In sequential analyses with 49-51 patients per arm, initial cure was 85% (95% CI: 73-92) in all arms. At D210, definitive cure was 87% (95% CI: 77-97) for AmBisome + SSG, 77% (95% CI 64-90) for AmBisome + miltefosine and 72% (95% CI 60-85) for miltefosine alone, with lower efficacy in younger patients, who weigh less. Miltefosine pharmacokinetic data indicated under-exposure in children compared to adults. CONCLUSION: No major safety concerns were identified, but point estimates of definitive cure were less than 90% for each regimen so none will be evaluated in Phase III trials in their current form. Allometric dosing of miltefosine in children needs to be evaluated. TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov, number NCT01067443

    Macrophage Activation Marker Neopterin: A Candidate Biomarker for Treatment Response and Relapse in Visceral Leishmaniasis

    No full text
    The Leishmania parasite resides and replicates within host macrophages during visceral leishmaniasis (VL). This study aimed to evaluate neopterin, a marker of macrophage activation, as possible pharmacodynamic biomarker to monitor VL treatment response and to predict long-term clinical relapse of VL. Following informed consent, 497 plasma samples were collected from East-African VL patients receiving a 28-day miltefosine monotherapy (48 patients) or 11-day combination therapy of miltefosine and liposomal amphotericin B (L-AMB, 48 patients). Neopterin was quantified with ELISA. Values are reported as median (inter-quartile range). Baseline neopterin concentrations were elevated in all VL patients at 98.8 (63.9-135) nmol/L compared to reported levels for healthy controls (<10 nmol/L). During the first treatment week, concentrations remained stable in monotherapy patients (p = 0.807), but decreased two-fold compared to baseline in the combination therapy patients (p < 0.01). In the combination therapy arm, neopterin concentrations increased significantly 1 day after L-AMB infusion compared to baseline for cured patients [137 (98.5-197) nmol/L, p < 0.01], but not for relapsing patients [84.4 (68.9-106) nmol/L, p = 0.96]. The neopterin parameter with the highest predictive power for VL relapse was a higher than 8% neopterin concentration increase between end of treatment and day 60 follow-up (ROC AUC 0.84), with a 93% sensitivity and 65% specificity. In conclusion, the identified neopterin parameter could be a potentially useful surrogate endpoint to identify patients in clinical trials at risk of relapse earlier during follow-up, possibly in a panel of biomarkers to increase its specificity

    Macrophage Activation Marker Neopterin : A Candidate Biomarker for Treatment Response and Relapse in Visceral Leishmaniasis

    No full text
    The Leishmania parasite resides and replicates within host macrophages during visceral leishmaniasis (VL). This study aimed to evaluate neopterin, a marker of macrophage activation, as possible pharmacodynamic biomarker to monitor VL treatment response and to predict long-term clinical relapse of VL. Following informed consent, 497 plasma samples were collected from East-African VL patients receiving a 28-day miltefosine monotherapy (48 patients) or 11-day combination therapy of miltefosine and liposomal amphotericin B (L-AMB, 48 patients). Neopterin was quantified with ELISA. Values are reported as median (inter-quartile range). Baseline neopterin concentrations were elevated in all VL patients at 98.8 (63.9-135) nmol/L compared to reported levels for healthy controls (<10 nmol/L). During the first treatment week, concentrations remained stable in monotherapy patients (p = 0.807), but decreased two-fold compared to baseline in the combination therapy patients (p < 0.01). In the combination therapy arm, neopterin concentrations increased significantly 1 day after L-AMB infusion compared to baseline for cured patients [137 (98.5-197) nmol/L, p < 0.01], but not for relapsing patients [84.4 (68.9-106) nmol/L, p = 0.96]. The neopterin parameter with the highest predictive power for VL relapse was a higher than 8% neopterin concentration increase between end of treatment and day 60 follow-up (ROC AUC 0.84), with a 93% sensitivity and 65% specificity. In conclusion, the identified neopterin parameter could be a potentially useful surrogate endpoint to identify patients in clinical trials at risk of relapse earlier during follow-up, possibly in a panel of biomarkers to increase its specificity

    Macrophage Activation Marker Neopterin: A Candidate Biomarker for Treatment Response and Relapse in Visceral Leishmaniasis

    No full text
    The Leishmania parasite resides and replicates within host macrophages during visceral leishmaniasis (VL). This study aimed to evaluate neopterin, a marker of macrophage activation, as possible pharmacodynamic biomarker to monitor VL treatment response and to predict long-term clinical relapse of VL. Following informed consent, 497 plasma samples were collected from East-African VL patients receiving a 28-day miltefosine monotherapy (48 patients) or 11-day combination therapy of miltefosine and liposomal amphotericin B (L-AMB, 48 patients). Neopterin was quantified with ELISA. Values are reported as median (inter-quartile range). Baseline neopterin concentrations were elevated in all VL patients at 98.8 (63.9–135) nmol/L compared to reported levels for healthy controls (&lt;10 nmol/L). During the first treatment week, concentrations remained stable in monotherapy patients (p = 0.807), but decreased two-fold compared to baseline in the combination therapy patients (p &lt; 0.01). In the combination therapy arm, neopterin concentrations increased significantly 1 day after L-AMB infusion compared to baseline for cured patients [137 (98.5–197) nmol/L, p &lt; 0.01], but not for relapsing patients [84.4 (68.9–106) nmol/L, p = 0.96]. The neopterin parameter with the highest predictive power for VL relapse was a higher than 8% neopterin concentration increase between end of treatment and day 60 follow-up (ROC AUC 0.84), with a 93% sensitivity and 65% specificity. In conclusion, the identified neopterin parameter could be a potentially useful surrogate endpoint to identify patients in clinical trials at risk of relapse earlier during follow-up, possibly in a panel of biomarkers to increase its specificity

    Visceral leishmaniasis relapse hazard is linked to reduced miltefosine exposure in patients from Eastern Africa : a population pharmacokinetic/pharmacodynamic study

    No full text
    Background: Low efficacy of miltefosine in the treatment of visceral leishmaniasis was recently observed in Eastern Africa. Objectives: To describe the pharmacokinetics and establish a pharmacokinetic/pharmacodynamic relationship for miltefosine in Eastern African patients with visceral leishmaniasis, using a time-to-event approach to model relapse of disease. Methods: Miltefosine plasma concentrations from 95 patients (48 monotherapy versus 47 combination therapy) were included in the population pharmacokinetic model using non-linear mixed effects modelling. Subsequently a time-to-event model was developed to model the time of clinical relapse. Various summary pharmacokinetic parameters (various AUCs, Time &gt; EC50, Time &gt; EC90), normalized within each treatment arm to allow simultaneous analysis, were evaluated as relapse hazard-changing covariates. Results: A two-compartment population model with first-order absorption fitted the miltefosine pharmacokinetic data adequately. Relative bioavailability was reduced (- 74%, relative standard error 4.7%) during the first week of treatment of the monotherapy arm but only the first day of the shorter combination regimen. Time to the relapse of infection could be described using a constant baseline hazard (baseline 1.8 relapses/year, relative standard error 72.7%). Miltefosine Time &gt; EC90 improved the model significantly when added in a maximum effect function on the baseline hazard (half maximal effect with Time. &gt; EC90 6.97 days for monotherapy). Conclusions: Miltefosine drug exposure was found to be decreased in Eastern African patients with visceral leishmaniasis, due to a (transient) initial lower bioavailability. Relapse hazard was inversely linked to miltefosine exposure. Significantly lower miltefosine exposure was observed in children compared with adults, further urging the need for implementation of dose adaptations for children

    Blood Parasite Load as an Early Marker to Predict Treatment Response in Visceral Leishmaniasis in Eastern Africa

    No full text
    Background: To expedite the development of new oral treatment regimens for visceral leishmaniasis (VL), there is a need for early markers to evaluate treatment response and predict long-term outcomes. Methods: Data from 3 clinical trials were combined in this study, in which Eastern African VL patients received various antileishmanial therapies. Leishmania kinetoplast DNA was quantified in whole blood with real-time quantitative polymerase chain reaction (qPCR) before, during, and up to 6 months after treatment. The predictive performance of pharmacodynamic parameters for clinical relapse was evaluated using receiver-operating characteristic curves. Clinical trial simulations were performed to determine the power associated with the use of blood parasite load as a surrogate endpoint to predict clinical outcome at 6 months. Results: The absolute parasite density on day 56 after start of treatment was found to be a highly sensitive predictor of relapse within 6 months of follow-up at a cutoff of 20 parasites/mL (area under the curve 0.92, specificity 0.91, sensitivity 0.89). Blood parasite loads correlated well with tissue parasite loads (ρ=0.80) and with microscopy gradings of bone marrow and spleen aspirate smears. Clinical trial simulations indicated a > 80% power to detect a difference in cure rate between treatment regimens if this difference was high (> 50%) and when minimally 30 patients were included per regimen. Conclusions: Blood Leishmania parasite load determined by qPCR is a promising early biomarker to predict relapse in VL patients. Once optimized, it might be useful in dose finding studies of new chemical entities

    Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration

    Get PDF
    Introductio: Based on the advances in the treatment of multiple sclerosis (MS), currently available disease-modifying treatments (DMT) have positively influenced the disease course of MS. However, the efficacy of DMT is highly variable and increasing treatment efficacy comes with a more severe risk profile. Hence, the unmet need for safer and more selective treatments remains. Specifically restoring immune tolerance towards myelin antigens may provide an attractive alternative. In this respect, antigen-specific tolerisation with autologous tolerogenic dendritic cells (tolDC) is a promising approach. Methods and analysis: Here, we will evaluate the clinical use of tolDC in a well-defined population of MS patients in two phase I clinical trials. In doing so, we aim to compare two ways of tolDC administration, namely intradermal and intranodal. The cells will be injected at consecutive intervals in three cohorts receiving incremental doses of tolDC, according to a best-of-five design. The primary objective is to assess the safety and feasibility of tolDC administration. For safety, the number of adverse events including MRI and clinical outcomes will be assessed. For feasibility, successful production of tolDC will be determined. Secondary endpoints include clinical and MRI outcome measures. The patients’ immune profile will be assessed to find presumptive evidence for a tolerogenic effect in vivo. Ethics and dissemination: Ethics approval was obtained for the two phase I clinical trials. The results of the trials will be disseminated in a peer-reviewed journal, at scientific conferences and to patient associations
    corecore