361 research outputs found

    Constraining the Cosmic Star Formation Rate with the MeV Background

    Get PDF
    The Cosmic Gamma-ray Background (CGB) in the MeV regime has been measured with COMPTEL and SMM. The origin of the CGB in this energy regime is believed to be dominated by gamma-rays from Type Ia supernovae. We calculate the CGB spectrum within the framework of FRW cosmology as a function of the cosmic star formation rate, SFR(z). Several estimates of the SFR(z) have been reported since the pioneering work of Madau et al. Here we discuss observational constraints on SFR(z) derived from models of the CGB. In particular, we consider the SFR obtained from Gamma-Ray Burst observations, which increases dramatically with redshift beyond z ~ 1 in contrast to most estimates which saturate or show a mild increase with redshift. Gamma-ray bursts may be the most powerful tracers of star formation in the early universe and thus provide signposts of the initial epoch of element synthesis. The star formation rate implied by GRB statistics results in a gamma-ray background that matches the observations more closely than that inferred from other tracers of star formation. This may provide some support for the GRB/SFR-paradigm, which in turn promises a powerful diagnostic of star formation, and thus cosmic chemical evolution, from the era of Population III stars to the present

    Advanced Compton Telescope Designs and SN Science

    Get PDF
    The Advanced Compton Telescope (ACT) has been suggested to be the optimal next-generation instrument to study nuclear gamma-ray lines. In this work, we investigate the potential of three hypothetical designs of the ACT to perform SN science. We provide estimates of 1) the SN detection rate, 2) the SN Ia discrimination rate, and 3) which gamma-ray lines would be detected from specific supernova remnants. We find that the prompt emission from a SN Ia is such that it is unlikely that one would be within the range that an INTERMEDIATE ACT would be able to distinguish between explosion scenarios, although such an instrument would detect a handful of SNRs. We further find that the SUPERIOR ACT design would be a truly breakthrough instrument for SN science. By supplying these estimates, we intend to assist the gamma-ray astrophysics community in deciding the course of the next decade of gamma-ray SN science.Comment: 10 pages, accepted for publication in New astronomy Reviews (Astronomy with Radioactivities III

    OSSE observations of galactic 511 keV annihilation radiation

    Get PDF
    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma-Ray Observatory has performed several observations of the galactic plane and galactic center region to measure the distribution of galactic 511 keV positron annihilation radiation. Preliminary analysis of data collected during the observation of the galactic center region over the period 13-24 Jun. 1991, indicates the presence of a 511 keV line and positronium continuum superimposed on a power-law continuum. The line of flux was found to be (2.7 +/- 0.5) x 10(exp -4) gamma/sq cm sec, with a positronium fraction of (0.9 +/- 0.2). The 3(sigma) upper limit to daily variations in the 511 keV line flux from the mean during the observation interval is 3 x 10(exp -4) gamma/sq cm sec. If all of the observed annihilation radiation is assumed to originate from the x-ray source 1E 1740.7-2942, the corresponding 511 keV line flux would be (3.0 +/- 0.6) x 10(exp -4) gamma/sq cm sec. The 3(sigma) upper limit for 511 keV line emission from the x-ray binary GX1+4 is 6 x 10(exp -4) gamma/sq cm sec. Results from the galactic plane observations at galactic longitudes of 25 degrees (16-21 Aug. 1991) and 339 degrees (6-11 Sep. 1991) suggest that the emission is concentrated near the galactic center. The observations and the preliminary results are described

    Hypernovae/GRB in the Galactic Center as possible sources of Galactic Positrons

    Full text link
    The observation of a strong and extended positron-electron line annihilation emission in the central regions of the Galaxy by INTEGRAL-SPI, consistent with the Galactic bulge geometry, without any counterpart in the gamma-ray range, neither at high energy nor in the 1809 keV 26^{26}Al decay line, is challenging. Leaving aside the geometrical question, we address the problem of the adequate positron sources, showing the potentiality of a new category of SN Ic, exemplified by SN2003dh, which is associated to a gamma-ray burst. This kind of supernova/hypernova/GRB event is interpreted as the result of a bipolar Wolf-Rayet explosion, which produces a large amount of 56^{56}Ni and ejects it at high velocity along the rotation axis. The bulk of positrons resulting from 56^{56}Co decay escapes in the surrounding medium due to the rapid thinning of the ejecta in the polar direction. We show that a rate of about 0.02 SN2003dh-like events per century in the central region of the Galaxy is sufficient to explain the positron flux detected by INTEGRAL-SPI. In order to explain this flux by SN Ia events alone, a rate of 0.5 per century is necessary, much higher than indicated by Galactic evolutionary models applied to the bulge. Further observations of late light curves of SNe Ia and SNe Ic in the bulge of spiral galaxies, together with 3D hydrodynamic calculations of anisotropic ejections of 56^{56}Ni in SN Ic/GRB events, will allow to estimate the separate contributions of SNe Ia and SNe Ic to positron injection.Comment: 7 pages, 0 figures, accepted for publication in Astrophysical Journal Letters, 2003 12 0

    OSSE spectral analysis techniques

    Get PDF
    Analysis of the spectra from the Oriented Scintillation Spectrometer Experiment (OSSE) is complicated because of the typically low signal to noise (approx. 0.1 percent) and the large background variability. The OSSE instrument was designed to address these difficulties by periodically offset-pointing the detectors from the source to perform background measurements. These background measurements are used to estimate the background during each of the source observations. The resulting background-subtracted spectra can then be accumulated and fitted for spectral lines and/or continua. Data selection based on various environmental parameters can be performed at various stages during the analysis procedure. In order to achieve the instrument's statistical sensitivity, however, it will be necessary for investigators to develop a detailed understanding of the instrument operation, data collection, and the background spectrum and its variability. A brief description of the major steps in the OSSE spectral analysis process is described, including a discussion of the OSSE background spectrum and examples of several observational strategies

    Operation and performance of the OSSE instrument

    Get PDF
    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Arthur Holly Compton Gamma Ray Observatory is described. An overview of the operation and control of the instrument is given, together with a discussion of typical observing strategies used with OSSE and basic data types produced by the instrument. Some performance measures for the instrument are presented that were obtained from pre-launch and in-flight data. These include observing statistics, continuum and line sensitivity, and detector effective area and gain stability

    Performance Analysis of DNN Inference/Training with Convolution and non-Convolution Operations

    Full text link
    Today's performance analysis frameworks for deep learning accelerators suffer from two significant limitations. First, although modern convolutional neural network (CNNs) consist of many types of layers other than convolution, especially during training, these frameworks largely focus on convolution layers only. Second, these frameworks are generally targeted towards inference, and lack support for training operations. This work proposes a novel performance analysis framework, SimDIT, for general ASIC-based systolic hardware accelerator platforms. The modeling effort of SimDIT comprehensively covers convolution and non-convolution operations of both CNN inference and training on a highly parameterizable hardware substrate. SimDIT is integrated with a backend silicon implementation flow and provides detailed end-to-end performance statistics (i.e., data access cost, cycle counts, energy, and power) for executing CNN inference and training workloads. SimDIT-enabled performance analysis reveals that on a 64X64 processing array, non-convolution operations constitute 59.5% of total runtime for ResNet-50 training workload. In addition, by optimally distributing available off-chip DRAM bandwidth and on-chip SRAM resources, SimDIT achieves 18X performance improvement over a generic static resource allocation for ResNet-50 inference
    corecore