14 research outputs found

    The Safe Zone--It\u27s not segregation

    Get PDF
    Let\u27s talk about the Safe Zone. Let\u27s talk about the creation of a ten room, single occupancy wing which is open to heterosexuals, allies, gays, lesbians, bisexual, transgendered, as well as thos who haven\u27t quite self-identified as
 Let\u27s be realistic, the Safe Zone, as proposed, will not come close to housing every gay and lesbian on the University of Maine campus, nor is that its attempt

    Unilateral ureteral obstruction impairs renal antioxidant enzyme activation during sodium depletion

    Get PDF
    Unilateral ureteral obstruction impairs renal antioxidant enzyme activation during sodium depletion.BackgroundObstructive nephropathy leads to progressive renal tubular atrophy and interstitial fibrosis and is associated with sodium wasting and sodium depletion. Renal damage resulting from unilateral ureteral obstruction (UUO) may be aggravated by reactive oxygen species (ROS), which are produced by a variety of processes. Ideally, deleterious effects of ROS are attenuated by antioxidant enzymes, including the superoxide dismutases, glutathione peroxidases, catalase, and glutathione-S-transferases. The general paradigm is that tissue damage occurs when ROS production is greater than the protective capacity of the antioxidant enzymes.MethodsThis study was designed to investigate the response of renal antioxidant enzymes to UUO and sodium depletion. Adult, male Sprague-Dawley rats received normal-sodium or sodium-depleted diets and were subjected to UUO or sham operation. Obstructed (UUO), intact opposite, or sham-operated kidneys were harvested after 14days, and antioxidant enzyme activities were measured in kidney homogenates. Thiobarbituric acid reactive substances were measured in these homogenates at 3 and 14days after UUO or sham operation as an index of ROS production.ResultsRenal interstitial area, a measure of fibrosis, was increased by UUO and was doubled in sodium-depleted animals. Sodium depletion increased manganese superoxide dismutase, glutathione peroxidases, and glutathione-S-transferase activities in sham-operated kidneys but not in UUO kidneys. Relative to intact opposite kidneys, UUO kidneys had reduced activities of catalase, manganese superoxide dismutase, and glutathione-S-transferase in normal-sodium animals and all antioxidant enzymes tested in sodium-depleted animals. Renal thiobarbituric acid reactive substances were increased by three days of UUO and were increased further by 14days of sodium depletion.ConclusionIn summary, sodium depletion increased several renal antioxidant enzymes, consistent with a stress response to increased ROS production. Further, UUO not only reduced antioxidant enzyme activities but also inhibited increases seen with sodium depletion. We conclude that suppression of renal antioxidant enzyme activities by UUO contributes to the progression of renal injury in obstructive nephropathy, a process exacerbated by sodium depletion

    Conformation-Dependent Human p52Shc Phosphorylation by Human c‑Src

    No full text
    Phosphorylation of the human p52Shc adaptor protein is a key determinant in modulating signaling complex assembly in response to tyrosine kinase signaling cascade activation. The underlying mechanisms that govern p52Shc phosphorylation status are unknown. In this study, p52Shc phosphorylation by human c-Src was investigated using purified proteins to define mechanisms that affect the p52Shc phosphorylation state. We conducted biophysical characterizations of both human p52Shc and human c-Src in solution as well as membrane-mimetic environments using the acidic lipid phosphatidylinositol 4-phosphate or a novel amphipathic detergent (2,2-dihexylpropane-1,3-bis-ÎČ-d-glucopyranoside). We then identified p52Shc phosphorylation sites under various solution conditions, and the amount of phosphorylation at each identified site was quantified using mass spectrometry. These data demonstrate that the p52Shc phosphorylation level is altered by the solution environment without affecting the fraction of active c-Src. Mass spectrometry analysis of phosphorylated p52Shc implies functional linkage among phosphorylation sites. This linkage may drive preferential coupling to protein binding partners during signaling complex formation, such as during initial binding interactions with the Grb2 adaptor protein leading to activation of the Ras/MAPK signaling cascade. Remarkably, tyrosine residues involved in Grb2 binding were heavily phosphorylated in a membrane-mimetic environment. The increased phosphorylation level in Grb2 binding residues was also correlated with a decrease in the thermal stability of purified human p52Shc. A schematic for the phosphorylation-dependent interaction between p52Shc and Grb2 is proposed. The results of this study suggest another possible therapeutic strategy for altering protein phosphorylation to regulate signaling cascade activation

    NVODS and the Development of OPeNDAP

    Get PDF
    The National Oceanographic Partnership Program (NOPP) funded a project to develop the foundation for a National Virtual Ocean Data System (NVODS) that has resulted in a robust data access framework for the exchange of oceanographic data (the Open source Project for a Network Data Access Protocol, or OPeNDAP) and a broad community of ocean data providers that remains vigorous and growing five years after NOPP funding ended. The project produced a number of "lessons learned" related to the design and implementation of distributed data systems that can inform other related efforts. These lessons are presented along with a brief overview of OPeNDAP and summaries of a number of projects that depend on OPeNDAP for data distribution

    Evidence for enhanced land-atmosphere feedback in a warming climate

    No full text
    Global simulations have been conducted with the European Centre for Medium-Range Weather Forecasts operational model run at T1279 resolution for multiple decades representing climate from the late twentieth and late twenty-first centuries. Changes in key components of the water cycle are examined, focusing on variations at short time scales. Metrics of coupling and feedbacks between soil moisture and surface fluxes and between surface fluxes and properties of the planetary boundary layer (PBL) are inspected. Features of precipitation and other water cycle trends from coupled climate model consensus projections are well simulated. Extreme 6-hourly rainfall totals become more intense over much of the globe, suggesting an increased risk for flash floods. Seasonal-scale droughts are projected to escalate over much of the subtropics and midlatitudes during summer, while tropical and winter droughts become less likely. These changes are accompanied by an increase in the responsiveness of surface evapotranspiration to soil moisture variations. Even though daytime PBL depths increase over most locations in the next century, greater latent heat fluxes also occur over most land areas, contributing a larger energy effect per unit mass of air, except over some semiarid regions. This general increase in land–atmosphere coupling is represented in a combined metric as a “land coupling index” that incorporates the terrestrial and atmospheric effects together. The enhanced feedbacks are consistent with the precipitation changes, but a causal connection cannot be made without further sensitivity studies. Nevertheless, this approach could be applied to the output of traditional climate change simulations to assess changes in land–atmosphere feedbacks

    Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching

    No full text
    Abstract Background Excess reactive oxygen species (ROS) and muscle weakness occur in parallel in multiple pathological conditions. However, the causative role of skeletal muscle mitochondrial ROS (mtROS) on neuromuscular junction (NMJ) morphology and function and muscle weakness has not been directly investigated. Methods We generated mice lacking skeletal muscle‐specific manganese‐superoxide dismutase (mSod2KO) to increase mtROS using a cre‐Lox approach driven by human skeletal actin. We determined primary functional parameters of skeletal muscle mitochondrial function (respiration, ROS, and calcium retention capacity) using permeabilized muscle fibres and isolated muscle mitochondria. We assessed contractile properties of isolated skeletal muscle using in situ and in vitro preparations and whole lumbrical muscles to elucidate the mechanisms of contractile dysfunction. Results The mSod2KO mice, contrary to our prediction, exhibit a 10–15% increase in muscle mass associated with an ~50% increase in central nuclei and ~35% increase in branched fibres (P < 0.05). Despite the increase in muscle mass of gastrocnemius and quadriceps, in situ sciatic nerve‐stimulated isometric maximum‐specific force (N/cm2), force per cross‐sectional area, is impaired by ~60% and associated with increased NMJ fragmentation and size by ~40% (P < 0.05). Intrinsic alterations of components of the contractile machinery show elevated markers of oxidative stress, for example, lipid peroxidation is increased by ~100%, oxidized glutathione is elevated by ~50%, and oxidative modifications of myofibrillar proteins are increased by ~30% (P < 0.05). We also find an approximate 20% decrease in the intracellular calcium transient that is associated with specific force deficit. Excess superoxide generation from the mitochondrial complexes causes a deficiency of succinate dehydrogenase and reduced complex‐II‐mediated respiration and adenosine triphosphate generation rates leading to severe exercise intolerance (~10 min vs. ~2 h in wild type, P < 0.05). Conclusions Increased skeletal muscle mtROS is sufficient to elicit NMJ disruption and contractile abnormalities, but not muscle atrophy, suggesting new roles for mitochondrial oxidative stress in maintenance of muscle mass through increased fibre branching
    corecore