518 research outputs found

    A Hybrid Jump Search and Tabu Search Metaheuristic for the Unmanned Aerial Vehicle (UAV) Routing Problem

    Get PDF
    In this research, we provide a new meta-heuristic, a jump search I tabu search hybrid, for addressing the vehicle routing problem with real-life constraints. A tour construction heuristic creates candidate solutions or jump points for the problem. A tabu search algorithm uses these jump points as starting points for a guided local search. We provide statistical analysis on the performance of our algorithm and compare it to other published algorithms. Our algorithm provides solutions within 10% of the best known solutions to benchmark problems and does so in a fraction of the time required by competing algorithms. The timeliness of the solution is vitally import to the unmanned aerial vehicle (UAV) routing problem. UAVs provide the lion\u27s share of reconnaissance support for the US military. This reconnaissance mission requires the UAVs to visit hundreds of target areas in a rapidly changing combat environment. Air vehicle operators (AVOs) must prepare a viable mission plan for the UAVs while contending with such real-life constraints as time windows, target priorities, multiple depots, heterogeneous vehicle fleet, and pop-up threats. Our algorithm provides the AVOs with the tools to perform their mission quickly and efficiently

    Three-Dimensional Mapping of Mineral Densities in Carious Dentin: Theory and Method

    Get PDF
    X-ray tomographic microscopy (XTM), a three-dimensional X-ray imaging technique, has been used to quantitatively map mineral concentrations in carious dentin. Data analysis from the XTM study indicates that variations in the mineral concentration surrounding the caries can be imaged in three dimensions with a spatial resolution that is sufficient to detect calcified and enlarged tubule spaces in the lesion. A three-dimensional image of the subsurface lesion indicates that lesion penetration is along the direction of the tubules. The mineral concentration in the uninfected dentin was measured by the XTM to be 1.29 ± 0.14 g/cm3 based upon the tabulated X-ray attenuation coefficients for apatite. This value is in excellent agreement with averaged estimates for the mineral concentration in dentin (1.4 g/cm3). Furthermore, the mineral concentration determined using XTM varies from 2.25 g/cm3 in the remineralized dentin to as low as 0.55 ± 0.17 g/cm3 in the demineralized tissue. The high concentration of mineral in the remineralized region suggests that organic matter is lost and mineral is deposited at some time during the caries process

    The Cosmic Microwave Background and Particle Physics

    Get PDF
    In forthcoming years, connections between cosmology and particle physics will be made increasingly important with the advent of a new generation of cosmic microwave background (CMB) experiments. Here, we review a number of these links. Our primary focus is on new CMB tests of inflation. We explain how the inflationary predictions for the geometry of the Universe and primordial density perturbations will be tested by CMB temperature fluctuations, and how the gravitational waves predicted by inflation can be pursued with the CMB polarization. The CMB signatures of topological defects and primordial magnetic fields from cosmological phase transitions are also discussed. Furthermore, we review current and future CMB constraints on various types of dark matter (e.g. massive neutrinos, weakly interacting massive particles, axions, vacuum energy), decaying particles, the baryon asymmetry of the Universe, ultra-high-energy cosmic rays, exotic cosmological topologies, and other new physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc

    The Naturalistic Flight Deck System: An Integrated System Concept for Improved Single-Pilot Operations

    Get PDF
    This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document

    Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu

    Get PDF
    The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is the selection of a prime sample-site on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample-sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRIS-REx team for image-based mapping of irregular small bodies. We emphasize the importance of using 3D shape models and the ability to work in body-fixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table

    Kinetic Energy Decay Rates of Supersonic and Super-Alfvenic Turbulence in Star-Forming Clouds

    Get PDF
    We present numerical studies of compressible, decaying turbulence, with and without magnetic fields, with initial rms Alfven and Mach numbers ranging up to five, and apply the results to the question of the support of star-forming interstellar clouds of molecular gas. We find that, in 1D, magnetized turbulence actually decays faster than unmagnetized turbulence. In all the regimes that we have studied 3D turbulence-super-Alfvenic, supersonic, sub-Alfvenic, and subsonic-the kinetic energy decays as (t-t0)^(-x), with 0.85 < x < 1.2. We compared results from two entirely different algorithms in the unmagnetized case, and have performed extensive resolution studies in all cases, reaching resolutions of 256^3 zones or 350,000 particles. We conclude that the observed long lifetimes and supersonic motions in molecular clouds must be due to external driving, as undriven turbulence decays far too fast to explain the observations.Comment: Submitted to Phys. Rev. Letters, 29 Nov. 1997. 10 pages, 2 figures, also available from http://www.mpia-hd.mpg.de/theory/preprints.html#maclo

    Extracting black hole physics from the lattice

    Get PDF
    We perform lattice simulations of N D0-branes at finite temperature in the decoupling limit, namely 16 supercharge SU(N) Yang-Mills quantum mechanics in the 't Hooft limit. At low temperature this theory is conjectured to be dual to certain supergravity black holes. We emphasize that the existence of a non-compact moduli space renders the partition function of the quantum mechanics theory divergent, and we perform one loop calculations that demonstrate this explicitly. In consequence we use a scalar mass term to regulate this divergence and argue that the dual black hole thermodynamics may be recovered in the appropriate large N limit as the regulator is removed. We report on simulations for N up to 5 including the Pfaffian phase, and N up to 12 in the phase quenched approximation. Interestingly, in the former case, where we may calculate this potentially difficult phase, we find that it appears to play little role dynamically over the temperature range tested, which is certainly encouraging for future simulations of this theory.Comment: 36 pages, 7 figure

    Sloan Digital Sky Survey Imaging of Low Galactic Latitude Fields: Technical Summary and Data Release

    Full text link
    The Sloan Digital Sky Survey (SDSS) mosaic camera and telescope have obtained five-band optical-wavelength imaging near the Galactic plane outside of the nominal survey boundaries. These additional data were obtained during commissioning and subsequent testing of the SDSS observing system, and they provide unique wide-area imaging data in regions of high obscuration and star formation, including numerous young stellar objects, Herbig-Haro objects and young star clusters. Because these data are outside the Survey regions in the Galactic caps, they are not part of the standard SDSS data releases. This paper presents imaging data for 832 square degrees of sky (including repeats), in the star-forming regions of Orion, Taurus, and Cygnus. About 470 square degrees are now released to the public, with the remainder to follow at the time of SDSS Data Release 4. The public data in Orion include the star-forming region NGC 2068/NGC 2071/HH24 and a large part of Barnard's loop.Comment: 31 pages, 9 figures (3 missing to save space), accepted by AJ, in press, see http://photo.astro.princeton.edu/oriondatarelease for data and paper with all figure
    • …
    corecore