
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2000

A Hybrid Jump Search and Tabu Search Metaheuristic for the A Hybrid Jump Search and Tabu Search Metaheuristic for the

Unmanned Aerial Vehicle (UAV) Routing Problem Unmanned Aerial Vehicle (UAV) Routing Problem

Gary W. Kinney Jr.

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Kinney, Gary W. Jr., "A Hybrid Jump Search and Tabu Search Metaheuristic for the Unmanned Aerial
Vehicle (UAV) Routing Problem" (2000). Theses and Dissertations. 4816.
https://scholar.afit.edu/etd/4816

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F4816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4816?utm_source=scholar.afit.edu%2Fetd%2F4816&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

A HYBRID JUMP SEARCH AND TABU SEARCH
METAHEURISTIC FOR THE UNMANNED AERIAL

VEHICLE (UAV) ROUTING PROBLEM

THESIS

Gary W. Kinney Jr., Captain, USAF

AFIT/GOA/ENS/00M-5

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

JDTIC QUALITY mWBffSBB^

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

A HYBRID JUMP SEARCH AND TABU SEARCH METAHEURISTIC FOR
THE UNMANNED AERIAL VEHICLE (UAV) ROUTING PROBLEM

6. AUTHOR(S)

Gary W. Kinney Jr., Captain, USAF

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOA/ENS/00M-05

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Mark O'Hair, Lt Col, USAF
UAV Battlelab mark.ohair@eglin.af.mil
1003 Nomad Way, Suite 107 Comm: (850) 882-5940 x208
Eglin AFB, FL 32542-6867 DSN: 872-5940 x208

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Advisor: Maj Raymond R. Hill, ENS, DSN: 785-3636, ext. 4327

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

ABSTRACT {Maximum 200 Words)
In this research, we provide a new meta-heuristic, a jump search / tabu search hybrid, for addressing the vehicle routing problem with real-life constraints. A tour
construction heuristic creates candidate solutions or jump points for the problem. A tabu search algorithm uses these jump points as starting points for a guided local
search. We provide statistical analysis on the performance of our algorithm and compare it to other published algorithms. Our algorithm provides solutions within
10% of the best known solutions to benchmark problems and does so in a fraction of the time required by competing algorithms. The timeliness of the solution is
vitally import to the unmanned aerial vehicle (UAV) routing problem. UAVs provide the lion's share of reconnaissance support for the US military. This
reconnaissance mission requires the UAVs to visit hundreds of target areas in a rapidly changing combat environment. Air vehicle operators (AVOs) must prepare a
viable mission plan for the UAVs while contending with such real-life constraints as time windows, target priorities, multiple depots, heterogeneous vehicle fleet, and
pop-up threats. Our algorithm provides the AVOs with the tools to perform their mission quickly and efficiently.
14. SUBJECT TERMS

Air Force Research, Operations Research, Optimization, Combinatorial Analysis, Algorithms,

Remotely Piloted Vehicles, Surveillance Drones, Multiple Depots, Time Windows (Jump Search, Tabu Search, Vehicle
Routing Problem, Java, Heuristics, Traveling Salesman Problem).

15. NUMBER OF PAGES
69

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the United States Air Force,

Department of Defense, or the US Government.

AFIT/GOA/ENS/OOM-5

A HYBRID JUMP SEARCH AND TABU SEARCH

METAHEURISTIC FOR THE UNMANNED AERIAL

VEHICLE (UAV) ROUTING PROBLEM

THESIS

Presented to the Faculty of the Graduate School of Engineering and Management
Air Force Institute of Technology

Air University
Air Education and Training Command

In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Operational Analysis

Gary W. Kinney Jr.,
Captain, USAF

March 2000

Approved for public release; distribution unlimited

AFIT/GOA/ENS/OOM-5

Approved:

A HYBRID JUMP SEARCH AND TABU SEARCH

METAHEURISTIC FOR THE UNMANNED AERIAL

VEHICLE (UAV) ROUTING PROBLEM

Gary W. Kinney Jr.,
Captain, USAF

R. Hill (Cnai
/ m^i oo

Maj Raymond R. Hill (Cnairman) date

/. /f/om*^ \ filar 00
Dr James T. Moore (Member) date

11

Acknowledgements

I would like to take the time to thank several people who helped me to complete

this work. Thanks to Lt Col (ret) Glenn Bailey, my initial thesis advisor before going off

to greener pastures, for choosing me for the mission. Thanks to Lt Col Mark O'Hair, my

thesis sponsor, for providing customer focus, the necessary information, and the funds to

go get it. Thanks to Dr. James Moore, my responsive reader, for undertaking the grueling

task of reading and editing this work. Thanks to Capt Kevin O'Rourke for laying down

the groundwork.

I would like to give special thanks to Maj Ray Hill, my thesis advisor, for

providing direction while allowing me to choose my own way, and for his advice and

assistance in all aspects of this undertaking. I would also like to give special thanks to Lt

Robert Harder, the Java guru and my wingman, whose help was crucial to the completion

of this effort and for coming along for the ride.

Finally, I would like to thank my friends and classmates for listening to me babble

on about this project when they had projects of their own to contend with and for

providing a much-appreciated distraction when I needed it. Most of all, I would like to

thank my family for providing the support I needed over the last year and the 32 years

before.

Gary W. Kinney Jr.

111

Table of Contents

Chapter 1. Background and Statement of the Problem 1

1.1 Background 1
1.2 Problem Statement 2
1.3 Scope and Contribution 3
1.4 Report Overview 4

Chapter 2. Literature Review 5
2.1 Vehicle Routing and Traveling Salesman Problems 5
2.2 Heuristic Approaches 9

2.2.1 Tour Construction and Tour Improvement Algorithms 9
2.2.2 Solomon's Insertion Heuristic 11
2.2.3 k-opt Improvement Algorithms 13
2.2.4 Tabu Search 13
2.2.5 Jump Search 15

2.3 Earlier UAV Routing Efforts 16
2.4 Analysis of Heuristics 17
2.5 Conclusion 18

Chapter 3. Methodology 20
3.1 Solution Representation 20
3.2 Tour Construction Heuristic 21

3.2.1 Parameter Settings 22
3.2.2 Tour Initialization 22
3.2.3 Customer Insertion 23
3.2.4 Completed Solutions 23

3.3 Local Search Heuristics 24
3.3.1 First Best Local Search 24
3.3.2 Global Best Local Search 27
3.3.3 Global Best Tabu Search 29
3.3.4 Reactive Tabu Search 31

3.4 The Jump Search Algorithm ...32
3.5 Conclusion 33

Chapter 4. Results 34
4.1 Description of Solomon Instances 34
4.2 Tour Construction Parameters 35
4.3 Tabu List Length 37
4.4 Jump Points 38
4.5 Heuristic Analysis 41
4.6 Comparison to O'Rourke's Reactive Tabu Search Algorithm 43
4.7 Comparison to Best Known Solutions for Solomon's MVRPTW Instances 48
4.8 Multiple Depot Problems 50
4.9 Conclusions 52

IV

Chapter 5. Recommendations for Further Research 53

5.1 Modeling UAV Realism 53
5.2 Tour Construction 53
5.3 Search Techniques 54
5.4 Extensions to VRP 54

Bibliography 55

List of Tables

Table 1 - Parameter Value Goodness-of-fit Test 36
Table 2 - Tabu Length Test 37
Table 3 - Average Best Jump Point Index 38
Table 4 - Jump Point Thresholds for JFB 39
Table 5 - Jump Point Thresholds for JGB 39
Table 6 - Jump Point Thresholds for JTS 40
Table 7 - Threshold / Iteration Combinations for JTS 40
Table 8 -Minimum Distances Found by All Algorithms 42
Table 9 - Average Solve Times for All Algorithms 43
Table 10 - Comparison on Solomon 25 Customer Problems 45
Table 11 - Comparison on Solomon 50 Customer Problems 46
Table 12 - Comparison on Solomon 100 Customer Problems 47
Table 13 - Comparison to Best Known Solutions for Solomon Instances 49
Table 14 - Comparison on Cordeau et al MD VRPs 50
Table 15 - Comparison on MD VRPs from Literature 51

VI

AFIT/GOA/ENS/OOM-5

Abstract

In this research, we provide a new meta-heuristic, a jump search / tabu search

hybrid, for addressing the vehicle routing problem with real-life constraints. A tour

construction heuristic creates candidate solutions or jump points for the problem. A tabu

search algorithm uses these jump points as starting points for a guided local search. We

provide statistical analysis on the performance of our algorithm and compare it to other

published algorithms. Our algorithm provides solutions within 10% of the best known

solutions to benchmark problems and does so in a fraction of the time required by

competing algorithms. The timeliness of the solution is vitally import to the unmanned

aerial vehicle (UAV) routing problem. UAVs provide the lion's share of reconnaissance

support for the US military. This reconnaissance mission requires the UAVs to visit

hundreds of target areas in a rapidly changing combat environment. Air vehicle operators

(AVOs) must prepare a viable mission plan for the UAVs while contending with such

real-life constraints as time windows, target priorities, multiple depots, heterogeneous

vehicle fleet, and pop-up threats. Our algorithm provides the AVOs with the tools to

perform their mission quickly and efficiently.

Keywords: Air Force Research, Operations Research, Combinatorial Analysis,

Algorithms, Remotely Piloted Vehicles, Surveillance Drones, Multiple Depots, Time

Windows, Jump Search, Tabu Search, Vehicle Routing Problem, Java, Heuristics,

Traveling Salesman Problem.

Vll

A HYBRID JUMP SEARCH AND TABU SEARCH

METAHEURISTIC FOR THE UNMANNED AERIAL

VEHICLE (UAV) ROUTING PROBLEM

Chapter 1. Background and Statement of the Problem

1.1 Background

Unmanned aerial vehicles (UAVs) play an increasingly important role in military

operations. In recognition of this fact, the Air Force established the UAV Battlelab at

Eglin AFB, FL in 1997. The UAV Battlelab's mission is to "rapidly identify and

demonstrate the military worth of innovative concepts that exploit the unique

characteristics of UAVs to advance Air Force combat capability" (USAF Unmanned

Aerial Vehicle Battlelab homepage, 1999).

The bulk of the UAV mission is reconnaissance. A reconnaissance mission

involves the UAV flying over a number of target areas within established time windows

and/or outside of restricted time windows, collecting images for a minimum (though

potentially longer) amount of time, and returning to base. The air vehicle operators

(AVOs) are responsible for creating a viable flight plan for each reconnaissance mission,

for each UAV under their control.

1

1.2 Problem Statement

The AVOs must determine the routing for multiple UAVs to cover designated

target areas while conforming to established time window restrictions and remaining

within UAV endurance limits. The routings must account for the wind and weather

conditions at various altitudes, no-fly zones, high threat areas, and target priorities if

complete target coverage is impossible. Currently, AVOs determine these routing

manually.

In a rapidly changing combat environment, new targets often arise. It is common

for UAV missions to receive a new target tasking during a mission, a dynamic re-tasking.

It is also common for there to be several re-taskings during the course of a UAV mission.

AVOs currently re-route the UAV manually to accommodate the re-tasking and try to

complete as much of the original plan as possible. AVOs need a way to quickly add new

targets to the route while minimizing the coverage impact on any targets not already

visited.

Mathematically, the problem is to minimize the 'cost' of coverage, {e.g. flight

time, man-hours, etc.) if target coverage is feasible or, alternatively to maximize coverage

with the available resources. We know the targets and their time window restrictions and

priorities, the number of vehicles available, current weather data, and threat areas. We

solve the problem by assigning tours to the available vehicles. Each tour consists of an

ordered list of targets. We are constrained by the time windows for the target areas, the

threat areas we must circumnavigate, and the endurance of the vehicles. Formally, this

problem is a multiple travelling salesman problem (TSP) with side constraints.

1.3 Scope and Contribution

This research continues the efforts of O'Rourke (1999) in support of the UAV

Battlelab. O'Rourke's algorithm provides the AVOs with near-optimal tours accounting

for time windows, threat areas, multiple vehicles, and asymmetric route lengths due to

wind. Our algorithm extends O'Rourke's effort in four areas. The first area adds a

priority scheme to the target areas to accommodate resource-constrained environments.

The second area adds the ability to handle heterogeneous vehicle types from multiple

starting locations, or depots. The third area adds the ability to route vehicles so as to

avoid restricted time windows or time walls. The final area provides a quicker solution

using a jump search / tabu search (JTS) hybrid algorithm.

We do not perform any target preprocessing. Operationally, the AVO receives a

target list and often the UAV can capture more than one target in a single snapshot.

Mathematically, this represents a coverage problem; however, for our purposes we

assume coverage is accounted for in the target area list provided to our algorithm.

We also do not account for vehicle turning radius or approach angles. Although

this can be an important aspect of vehicle routing, such capabilities vary based on vehicle

type. Since our algorithm handles multiple vehicle types, we assume AVOs handle the

flight profile execution detail.

Finally, we do not account for changes in terrain. Although terrain may affect

route feasibility, certain assumptions must be made in order to return an answer in a

reasonable amount of time. We will consider terrain as flight profile execution and again

leave that to the AVOs.

Our contribution lies in assisting the AVOs in two important ways. First, the

jump search portion of our algorithm provides the AVOs with a very quick, feasible,

high-quality solution. This is an important capability for dynamically routing an airborne

UAV. Time permitting, the AVOs can further refine a quickly obtained solution by

engaging the tabu search portion of the algorithm. Second, we provide enhancements to

known heuristic approaches to address customer prioritization, time walls, multiple

depots, and non-homogeneous vehicles.

In terms of operations research, this effort provides a new meta-heuristic

approach, a JTS hybrid algorithm, for solving complex vehicle routing problems. This

algorithm is based on the hypothesis that the speed of tabu search is improved with a

quality starting solution and that multiple starting solutions are an effective

diversification technique for the search. We prove both of these hypotheses through

empirical testing.

1.4 Report Overview

Chapter 2 presents a brief review of the literature pertaining to this research, while

Chapter 3 presents a proposed methodology for conducting the research. Chapter 4

presents our test of the algorithm and analysis of the test results. Chapter 5 provides

avenues for further research.

Chapter 2. Literature Review

2.1 Vehicle Routing and Traveling Salesman Problems

The vehicle routing problem (VRP) and the traveling salesperson (agent) problem

(TSP) are two classic problems of operations research. The literature contains many

examples of different varieties of these problems, some of which we describe below.

Lawler et al (1985) provides comprehensive coverage of the TSP and its variants.

The two problems are closely related. In the TSP, a 'salesman' must visit a list of

cities and return home, visiting each city only once. The objective is to find the

minimum tour length. A tour or route consists of an ordered list of cities visited. By its

classical definition, a sub-tour is an ordered cycle of one or more cities that does not

include all of the cities. The presence of sub-tours in the solution of a TSP makes the

solution infeasible.

For our purposes, we may not have the resources to visit all the cities. Therefore,

we define a sub-tour as an ordered cycle of two of more cities that does not include the

starting city or depot. The VRP is an extension of the TSP, in which the vehicle either

delivers or picks up items from the cities subject to volume and weight capacity

constraints.

Carlton (1995) creates a hierarchical classification scheme for the General VRP

(GVRP). His classification establishes tiers for the basic TSP, VRP, and pickup and

delivery problems (PDP). In a VRP, the vehicles perform either delivery or pickup

operations exclusively. A PDP extends the VRP to where vehicles can make one or more

pickups from customers along the route for delivery to other customers along the route.

5

Each tier allows for any combination of special cases of each of the problems.

The problem can have a single vehicle (SV), multiple homogeneous vehicles (MVH), or

multiple non-homogeneous vehicles (MVH). The vehicles can depart from a single depot

(SD), or multiple depots (MD), and the tour can be constrained by time windows (TW)

and route length (RL) (Carlton 1995). Using Carlton's classifications, our problem is a

MD MVH TSP with TW and RL. The route length constraint represents the endurance of

the vehicle. In addition, we must contend with added constraints accommodating

customer priorities and restricted time windows.

We base our mathematical formulation of the problem on Carlton's formulation

for the MD MVH PDP with TW and RL and Ryan's formulation for the MVH SD TSP

with TW and RL (Carlton 1995, Ryan et al 1999). We have k=l...Vvehicles located at

r=l...D depots which must service N customers indexed by / and/

Each customer has a service time .s,-, a time window defined by earliest arrival e,

and latest departure /,, and a restricted time window defined by earliest restricted time er,

and latest restricted time /r,. Vehicles arriving early may wait with waiting time W, at

customer /, equal to the earliest arrival time e, minus the actual arrival time. Vehicles

arriving during the restricted time must also wait with waiting time Wt at customer /,

equal to the latest restricted time /r, minus the actual arrival time. Vehicles arriving

before the earliest restricted time er, must be able to complete service before the earliest

restricted time er, or must also wait with waiting time Wt at customer i, equal to the latest

restricted time /r, minus the actual arrival time. If a customer is not visited, it has an

associated penalty/?, based on its priority.

Each segment between customers / andy has an associated cost c,y*r, time required

to travel the segment %r, and segment penalty spijkr for time spent in high threat areas and

no fly zones; all of these values differ based on vehicle type. Each vehicle begins and

ends its tour at its depot, customer index 0, and has an endurance (maximum route

length) ukr.

We assign a value of 1 to X^r if vehicle k from depot r travels from customer i to

customer,/*. We assign the starting service time for customer i to T,. We assign a value of

1 to tii if customer i is not visited. The objective is to minimize

reD keV ietf jeN ieN ieN

Subject to tour constraints,

XXX^=1 VJ*N (2a)
reDkeV ieN

[one vehicle enters each customer]

IV-I^=0 VjzN,keV,reD (2b)
ieN ieN

[same vehicle that enters each customer leaves it]

time window constraints,

Xijkr=l=>Tj=Ti+si+tijkr+Wj Vi,jeN,VkeVyreD (3a)

[time precedence]

e, <7) and 7) + s, <lt Vi&N (3b)
[time windows]

lrt <7) or Tt + s: <ert VieN (3c)
[restricted time windows]

route length constraints,

XXta+w0+'J-*«**"* VfceV.reD (4)
ieN jeN

7

visitation constraints,

».=1-ZS5Xr
yieN (5)

reDkeV j<=N

and binary constraints.

X,^e{04} Vi,jeN,VkeVyreD (6a)

«,. e {0,1} VieJV (6b)

Finally, we need sub-tour breaking constraints. Let iV*r represent the subset of

available customers visited by vehicle k from depot r. For each vehicle, we add the

following constraints

X X XUkr - 1 V nonempty subset Qc,Nkr. (7)
ieß je Q

In Chapter 3, we show our solution structure implicitly enforces these constraints as well

as the standard tour (2) and binary constraints (6). The time window constraints (3)

ensure vehicles service the customers within required time windows. The route length

constraints (4) ensure the tour is within vehicle endurance limits.

In addition, we accommodate customer priorities, asymmetric route lengths, threat

areas and no-fly zones. We encapsulate these restrictions in our objective function (1),

where the asymmetric route lengths are reflected in the segment cost Cy*r- We penalize

segments that enter threat areas and no-fly zones based on the time spent in these areas

and add the penalty spijkr to solutions containing the offending segment. Lastly, we add

the priority penalty/?, for each unvisited customer.

2.2 Heuristic Approaches

In terms of computational complexity, the TSP belongs to the class NP-hard

(Lawler et al 1985). A polynomial-time algorithm does not exist for members of this

class, and it is unlikely one will ever be discovered (Parker and Rardin 1982a, 1982b).

The number of possible solutions to the TSP grows at a factorial rate as the number of

customers increases, which makes enumeration algorithms unappealing. Consequently,

heuristic approaches dominate the solution techniques for the TSP and VRP (Brandao

and Mercer 1997, Carlton 1995, Clarke and Wright 1964, Gendreau et al 1994, Gendreau

et al 1998, O'Rourke 1999, Rochat and Semet 1994, Ryan et al 1999, Semet and Taillard

1993, Solomon 1987, Tsubakitani and Evans 1998). Heuristic approaches provide no

guarantee of optimality, although most provide at least a feasible solution in a relatively

short amount of time. Timeliness of a solution is very important for our implementation,

as UAV operations are typically time-sensitive.

2.2.1 Tour Construction and Tour Improvement Algorithms

Laporte (1992a, 1992b) surveys current optimal and heuristic techniques for both

the TSP and VRP and notes that heuristic techniques fall into two categories: tour

construction algorithms and tour improvement algorithms. Tour construction algorithms

start with all customers unassigned and attempt to build a near-optimal solution.

Conversely, tour improvement algorithms start with the customers assigned and attempt

to improve the solution by changing the order in which the vehicles visit the customers or

changing which vehicles visit which customers.

Some common tour construction algorithms include nearest neighbor

(Rosenkrantz et al 1977), the Clarke and Wright savings (Clarke and Wright 1964),

sweep (Gillett and Miller 1974), and their insertion versions. At each iteration, nearest

neighbor adds the nearest customer to the end of a current tour until all customers are

visited. The vehicle then returns to the starting point after the last customer is added.

While very quick, this approach's solutions are generally poor. The Clarke and Wright

savings heuristic starts with all customers visited via independent tours. It then chooses

the next customer to add to the current tour based on the net savings of visiting the

customer pair on a single tour versus two separate tours. The sweep heuristic attempts to

cluster the customers first by 'sweeping' in a circle from the depot. The insertion

versions are more complex and allow for customers to be inserted anywhere in the tour.

Insertion algorithms generally produce higher quality solutions (Laporte 1992a, 1992b).

Solomon (1987) modifies some of the common tour construction heuristics to

handle the VRP with the addition of time windows (TW). He modifies the nearest

neighbor, savings, and sweep heuristics, and provides an insertion-based heuristic with

three different insertion criteria. He also provides the MVH VRP TW test cases. These

test cases form the literature's standard for measuring MVH VRP TW algorithm

performance. His most robust insertion algorithm achieves the best results for 27 of the

56 problems tested and a lower bound within 8.3% of best known solutions for the

remaining 29 problems (Solomon 1987). (All further references to Solomon's insertion

heuristic are based exclusively on the most robust version.)

10

2.2.2 Solomon's Insertion Heuristic

Solomon suggests two methods for initializing tours in his insertion heuristic.

The first routes to the farthest customer, and the second routes to the customer with the

earliest deadline. Once the tour is initialized, remaining customers are inserted until

either the vehicle is at maximum capacity or no other customers can be added without

violating time window feasibility or vehicle endurance. At this point, another tour is

initialized and the process continues.

The algorithm inserts customer u between customers / andy based on two criteria:

Cl(i,u,j) and C2(i,u,j). Cl(i,u,j) determines the best insertion point for each unassigned

customer u as

Cl(i(u),u,j(u)) = min(cl(ip,u,jp+l)) p = \,...,m (8a)

and

c\(ip, u, jp+x) = a\(diu + duj -ßdy)+ al(bju -bj) (8b)

where dy is the distance between customers i and j, bjU is the beginning service time of

customer j with customer u inserted before it, bj is the beginning service time of customer

j without customer u inserted and/? is the position, from 1 to m, within the current tour.

Parameters al and a2 must be positive and sum to one, while parameter fi must be

positive.

Equation (8a) attempts to minimize the cost of inserting customer u into an

emerging tour in terms of distance added (diu + duj - ßdi}) and delay in service to the

following customer (bju - bj). Parameter fi determines how much of the original distance

between customers i andy" is subtracted from the distance between customer i to customer

11

u to customer), while parameters al and cx2 balance the relative importance of distance

and time window feasibility. All three parameters are user set.

Next, the algorithm chooses which customer to insert based on criteria C2(i,u,j) as

C2(i(u),u, j(u*)) = max{A,-d0U -Cl(/(u),w, j(u))) Vunroutedcustomer u. (9)

Equation (9) inserts the unassigned customer u with the largest 'savings' compared to the

distance between the customer and the depot 0. Parameter A is the multiplier for the

distance. The insertion continues until the algorithm has routed all customers (Solomon

1987).

Time window feasibility is maintained throughout the algorithm. Solomon's

Lemma 1.1 states that if a customer is inserted into a tour that is time window feasible, it

remains time window feasible if the insertion does not result in a delay to the following

customer (1987). Therefore, when we insert a new customer, we need only check from

the insertion point until we (1) find a customer whose service time is not delayed, (2) we

find a time window violation, or (3) we reach the end of the tour.

Since a VRP is very similar to the TSP, we can easily modify many of the

algorithms developed for one problem to find solutions for the other. For example, an

algorithm developed for the VRP can be used for the TSP by relaxing the vehicle

capacity constraints.

We use a tour construction algorithm based on Solomon's insertion heuristic in

our JTS algorithm. Solomon develops his algorithm for the VRP with time windows.

We use the same algorithm, but remove vehicle capacity constraints.

12

2.2.3 k-opt Improvement Algorithms

The Jk-opt algorithms are common tour improvement procedures. In the k-opt

algorithm, k routes are dropped and replaced at each iteration until no further improving

moves exist. For example, a move that swaps two adjacent customers, thus exchanging

two routes, is a two-opt move (assuming the routes are symmetric).

2.2.4 Tabu Search

The more robust algorithms contain both tour construction and &-opt improvement

moves. Of the heuristic approaches, Laporte (1992b) states that the tabu search heuristic

may be one of the best for TSP and VRP. Indeed, tabu search's proven record in solving

these types of problems (Brandao and Mercer 1997, Carlton 1995, Gendreau et al 1994,

Gendreau et al 1998, O'Rourke 1999, Rochat and Semet 1994, Ryan et al 1999, Semet

and Taillard 1993) motivates its use in this effort.

Tabu search (TS) is a meta-heuristic developed by Glover (1989, 1990a). TS

provides a methodology to escape local optima by use of recency-based memory. The

search moves from solution to solution while maintaining a list of recent moves. The

moves in this list are tabu or off-limits. This stops the algorithm from cycling back to

local optima after taking a non-improving move (Glover and Laguna 1997). The

literature provides many variations and extensions of TS implementation (see Glover and

Laguna 1997).

Many tabu search implementations use a heuristic to build a starting solution

(Brandao and Mercer, 1997; Carlton, 1995; Gendreau et al 1994, Gendreau et al 1998;

Rochat and Semet, 1994). This approach generally improves the quality of the solution

13

and the speed of the algorithm. Carlton (1995) and Rochat and Semet (1994) implement

Solomon's insertion heuristic for this purpose, with both noting the degree to which the

starting solution improved the overall solution depends upon the parameters used and the

configuration of the customers.

Carlton (1995) develops algorithms to solve the VRPTW using a reactive tabu

search (RTS) meta-heuristic. Reactive tabu search (RTS) (Battiti 1996) allows the length

of the tabu list to change based on the quality of the search. When the search appears to

be cycling through the same solutions, the algorithm increases the tabu length to force

search diversification and break the cycle.

Two important facets of any good TS algorithm are intensification and

diversification (Glover and Laguna 1997). Intensification is the process of conducting a

more thorough search in the areas of the solution space where the algorithm has found

good solutions. By contrast, diversification drives the search into new, previously

unexplored, areas of the solution space.

One popular intensification technique is a candidate or elite list. The TS starts by

diversifying and quickly scanning the solution space. The top candidate solutions found

are saved in an elite list. After the diversification period, the search moves to each

candidate in the elite list and intensifies the search in the neighborhoods of those elite

solutions. Our approach is similar to the elite list, except we begin the TS with an elite

list already in place. We obtain this elite list using tour construction heuristics.

14

2.2.5 Jump Search

Tsubakitani and Evans (1998) developed the jump search (JS) meta-heuristic as a

way to generate good candidate solutions using a quick tour-construction heuristic and

then use these candidate solutions as 'jump points' for a local search. The idea springs

from the notion that there exists plateaus of good solutions within the solution space, and

these jump points provide quick access to those plateaus. In their study, Tsubakitani and

Evans use JS to guide two-opt and three-opt improvement algorithms to solve a 1-TSP

without side constraints.

Their JS uses six different tour construction heuristics to generate a list of

candidate jump points. The algorithm orders the candidate jump points based on

objective function value. If two heuristic solutions differ by a single move, the algorithm

keeps the solution with the best objective function value. The algorithm then launches a

local search from the best available jump point. When JS finds a local optimum, the

search moves to the next jump point on the candidate list. This process continues until all

jump points are exhausted or the algorithm reaches a predetermined time limit or number

of iterations.

JS produces equal or better solutions than TS for nearly all of the test cases

Tsubakitani and Evans examine. However, they compare their JS algorithm to a very

basic TS algorithm, one without intensification or diversification, and on a very basic

problem, 1-TSP (Tsubakitani and Evans 1998). We hypothesize that in complex

problems, these good plateaus may contain many local optima; consequently, it may be

unwise to give up the search when we find the first local optimum.

15

TS provides a mechanism to escape the local optima and continue the search. We

can search the plateau more thoroughly and therefore intensify the search in promising

areas. When the rate of improvement in the solution quality begins to level off, the

procedure moves to the next jump point and diversifies to an unexplored area of the

solution space. Tsubakitani and Evans suggest that a JS / TS hybrid (JTS) could be a

very effective search algorithm. We explore this suggestion and apply it to the UAV

routing problem.

2.3 Earlier UAV Routing Efforts

Our UAV research effort is one of many performed in recent years. Sisson (1997)

constructs a RTS algorithm based on Carlton's (1995) RTS approach to solve the UAV

routing problem while accounting for wind effects and attrition due to enemy actions.

Sisson's approach determines the minimum number of vehicles required to cover a

specified target area given a risk assessment based on enemy threat and provides insight

into the minimum tour and minimum risk involved in providing the necessary coverage.

The routes are passed into a Monte Carlo simulation to assess vehicle losses and expected

coverage of targets (Sisson 1997).

Ryan et al (1999) centers on finding the 'robust tour', using the minimum number

of vehicles. He defines the 'robust tour' as the route least affected by changes in threat,

target area service times, and weather conditions. Using an embedded optimization

approach, his Monte Carlo simulation generates random weather conditions and

probabilities of survival for each target. He then passes these values into a reactive tabu

16

search (RTS) algorithm to search for the best solution under each set of variations, with

the robust solution defined as the solution appearing most often.

While Ryan's results are useful and appropriate for autonomous UAVs in which

missions are preplanned, they do not address the concerns of the more dynamic missions

of UAVs such as the US Air Force's RQ-1A Predator (O'Rourke 1999). USAF pilots in

a ground control station control the Predator vehicle remotely. Consequently, they are

able to change the Predator routes as the mission dictates. O'Rourke recognizes the need

for a program capable of returning the best available tour based on current conditions and

return this solution in a short enough time for it to be of use.

O'Rourke's efforts focus on a dynamic routing algorithm. Building upon the RTS

algorithm from Ryan et al (1999) and Carlton (1995), he develops a Java-based

application to solve this problem. O'Rourke adds functionality to the algorithm to

account for, and take advantage of, multiple wind tiers. Additionally, his program

incorporates time windows, no-fly zones, and threat areas as in previous efforts. He adds

the ability to perform dynamic routing, so vehicles may start from their current location

and return to the depot, and he improves the performance of the algorithm using a

reactive penalty scheme.

2.4 Analysis of Heuristics

As Hooker (1995) observes, too much of heuristic research is reduced to

competitive testing. Researchers are forced to show that their new algorithms are faster

or produce higher quality solutions than existing algorithms to be published. What is

typically missing is any kind of explanation as to why the algorithms perform as they do

17

and any statistical support that the superior performance of the algorithm extends beyond

the test problems.

We develop and test five local search algorithms using empirical experimentation

to gain insight into which approach is superior and why. Due to differences in

programming techniques, testing competing algorithms head-to-head is problematic. We

overcame this problem by modifying a common algorithm to isolate the differences due

to the particular modifications made to that algorithm.

2.5 Conclusion

Although a tremendous amount of research exists on the TSP and its variants, few

have endeavored to incorporate multiple non-homogeneous vehicles and multiple depots

into the solution algorithms. These side constraints are very important to real-life

problems in the military and civilian sector. While prioritizing customers for inclusion

into tours is not tremendously difficult, it seems to have been neglected entirely,

suggesting that customer prioritization is prominent mainly in military applications.

TS is a popular heuristic for solving TSPs and it provides good results. Many TS

algorithms are primed with an initial solution provided by a tour construction heuristic

that improves the performance of the algorithm. Carlton (1995) and O'Rourke (1999)

demonstrate that a robust TS algorithm can overcome an arbitrary starting solution. We

investigate TS performance when provided multiple, high-quality initial solutions.

When the tour construction heuristic generates a good starting solution for the TS,

it finds high quality solutions rather quickly. However, the quality of the solutions

generated depends on the configuration of the customers and the tour construction

18

heuristic used. Unfortunately, we do not know the customer configuration when the

algorithm is developed. We can overcome this dilemma by generating multiple initial

solutions using a tour construction heuristic with different initialization schemes and

multiple parameter settings. In the next chapter, we discuss how we implement this

approach.

19

Chapter 3. Methodology

3.1 Solution Representation

The first step in building our JTS hybrid algorithm is determining how we

represent the solution in the algorithm. We use a solution representation developed by

Harder (2000). Figure 1 shows the representation of the problem solution.

Solution

Tourl Tour 2 Tour n

1 r 1 r v
Customer 1 Vehicle Customer 1 Vehicle Customer 1 Vehicle

+ + 1
Customer 2 Customer 2 Customer 2

•
•
*

1
▼

•
•
m

1
▼

•
•
m

1
▼

Customer ml Customer m2 Customer mn

Figure 1 - Representation of Problem Solution

Each solution is comprised of n tours, where n is the number of available vehicles.

Each tour has an associated vehicle and an ordered list of customers. We evaluate each

tour individually for solution quality based on the associated vehicle's attributes and

depot location. If we lack the vehicle resources to cover all targets, a dummy tour

contains customers that are not visited, and the solution is penalized based on the priority

20

of those customers. A significant advantage of this representation is it implicitly captures

the standard tour (2), binary (6), and sub-tour breaking (7) constraints.

3.2 Tour Construction Heuristic

We build our 'jump point' solutions using an insertion heuristic based on

Solomon (1987). While Solomon's insertion heuristic arbitrarily chooses the next tour to

construct, we build a tour for the vehicle closest to the initializing customer, which allows

us to take advantage of multiple depots. We account for a heterogeneous vehicle fleet by

evaluating each vehicle by its individual capabilities and only assigning the vehicle

customers it is capable of servicing. Restricted time windows, or time walls, are handled

in a similar way to time windows by maintaining time windows/wall feasibility

throughout the algorithm. To incorporate customer priorities, we remove customers from

the dummy tour based on their priority (i.e., all priority 1 customers are assigned to real

vehicles before priority 2 customers are considered). The logic flow for the tour

construction algorithm is:

Step CON-1: Calculate cost matrix for each available vehicle.

Step CON-2: Build parameter matrix.

Step CON-3: Select the next set of parameters.

Step CON-4: Initialize the next tour based on the selected initialization method.

Step CON-5: Insert customers based on equations (8) and (9).

Step CON-6: When the tour is full return to CON-4.

Step CON-7: When all tours are full or all customers are assigned add the solution to the

jump point array.

21

Step CON-8: If all parameters have been used, return the jump point array, STOP.

Otherwise, return to CON-3.

3.2.1 Parameter Settings

To develop a complete list of diverse starting solutions, we use a variety of

parameter settings in our tour construction heuristic. We use each set of parameters in

conjunction with both initialization criteria discussed in Section 3.2.2. We employ the

following parameter ranges suggested by Rochat and Semet (1994)

a\ = 0.0; 0.1;...; 1.0

a2 = l-al

fl) A = 1.25; 1.50; 1.75;2.00 anda = X-\

|2) A = 0.0;0.5; 1.0; 1.5 and \i = 1

These parameter ranges, combined with both initialization methods, yield 176 different

combinations.

3.2.2 Tour Initialization

Since we attempt to generate a list of diverse solutions, we use two initialization

techniques. We modify the first initialization method to include penalties for time spent

in threat areas or no-fly zones, effectively assigning the costliest customers first. Since

we have multiple depots, we find the customer with the largest minimum cost to any of

the remaining vehicles. We assign this customer to the nearest remaining vehicle and

build a tour for that vehicle.

For the second initialization method, we find the customer with the earliest

deadline (latest arrival time). We assign the customer to the nearest remaining vehicle

22

and build a tour for that vehicle. Since we have a heterogeneous vehicle fleet, only

vehicles capable of servicing the customer are considered. In both cases, priority of

customers takes precedence over other selection criteria in initializing a tour.

3.2.3 Customer Insertion

Customers are inserted based on Solomon's original algorithm using equations (8)

and (9). However, only customers the vehicle is capable of servicing are considered. The

insertion considers customers in priority order and continues until all customers are

assigned or all tours are full.

Time window and time wall feasibility is maintained throughout the process. Due

to Solomon's lemma, we are able to check time window and time wall feasibility very

efficiently. Vehicle's arriving before a customer's time window must wait until the time

window begins. Vehicle's unable to complete service before a customer's time wall

begins must wait until the end of the time wall to start service. Only feasible customer

insertions are considered.

3.2.4 Completed Solutions

A tour is full when any further insertions will violate time window/time wall

feasibility or vehicle endurance. The solution is complete when all available vehicles

have full tours or all customers have been assigned. We insert completed solutions into

the jump point array in descending order of solution quality.

A solution possessing the same number of vehicles, travel distance, waiting time,

and penalty as an existing solution in the jump point array is considered equal to the

solution and is discarded. In their original jump search algorithm, Tsubakitani and Evans

23

(1998) retained only the jump points from mutually exclusive neighborhoods. Even with

the simplest of neighborhoods, this neighborhood determination becomes a complex and

computationally expensive task. Through preliminary empirical testing on the Solomon

MVH VRP TW test cases, we determined this approach was not cost-effective. The rate

of duplicate best solutions found by the local search algorithms is less than 7% when all

jump points are explored. Consequently, we simply retain all unique jump points.

3.3 Local Search Heuristics

We explore each jump point provided by our tour construction algorithm with

three different local search heuristics: a first best local search, a global best local search,

and a global best tabu search. As an experimental control, we test a reactive tabu search

initialized two different ways. First, we generate all of the jump points and initialize the

RTS with the best jump point (RTS-best). Second, we initialize the RTS after generating

a single jump point (RTS-one).

3.3.1 First Best Local Search

The first best local search (FBLS) makes the first improving move found and

continues doing so until no more improving moves can be found indicating we have

reached a local optimum. For this algorithm, we consider only single customer insertion

moves. A single customer can be removed from one tour and inserted into another tour

or a different spot in the same tour. Only feasible insertions are considered. The logic

flow for the FBLS algorithm is:

Step FBLS-1: Improve tours individually by rearranging customers within tours.

Step FBLS-2: Improve the solution further by rearranging customers between tours.

24

Step FBLS-3: If we found at least one improving move, try to assign customers from the

dummy tour.

Step FBLS-4: If we found at least one improving move, return to FBLS-1.

Step FBLS-5: If we did not find an improving move, return the solution, STOP.

3.3.1.1 Rearranging Customers within Tours

Starting with the first customer in the first tour, we temporarily remove individual

customers while noting the current cost to service that customer. The cost of servicing a

customer is the travel distance, the wait time, and the penalty associated with the

segments connecting the customer to the tour. These values for customer u currently

between customers i and j can be calculated with the following equations

diu + duj - dtj where dy is the distance between / and j (10)

[travel distance]

wiu + wuj - Wjj where Wy is the wait time wheny follows i (11)

[wait time]

Piu + Puj ~ Py where py is the penalty between i and j (12)
[penalty]

Using equations (10), (11), and (12), we calculate the cost to service the customer

at every other position in the tour starting from the first position. If the new cost of

service is less than the current cost of service, we check time window/time wall and

vehicle endurance feasibility. If the move is feasible, we insert the customer in the new

position and check the next customer. If we cannot find any feasible improving moves

for the customer, we return it to its original position and check the next customer.

25

When we cannot find any feasible improving moves for the current tour, we check

the next tour. When we can no longer improve any of the tours, we attempt to rearrange

customers between tours.

3.3.1.2 Rearranging Customers between Tours

Starting with the first customer in the first tour, we try to find a cheaper position

for the customer in another tour. We evaluate the current cost of service for the customer

using equations (10), (11), and (12).

We consider other tours in lexicographical order if the vehicle type is appropriate

and there is sufficient capacity. If the vehicle can service the customer, we calculate the

new cost of service for each position in the tour starting with the first position. If the new

cost of service is less than the current cost of service, we check time window/time wall

and vehicle endurance feasibility. If the move is feasible, we insert the customer in the

new tour position and check the next customer. If we cannot find any feasible improving

moves for the customer, we check the next customer.

When we cannot find any feasible improving moves for any of the customers in

the tour, we check the next tour. When we can no longer improve any of the tours by

rearranging customers between them, we attempt to empty the dummy tour.

3.3.1.3 Assigning Customers from the Dummy Tour

By reducing the costs of the tours, we hope that we have made room for

customers not currently assigned. Since we are maximizing coverage first and

minimizing cost second, we assign customers from the dummy regardless of the increase

in costs.

26

Considering each dummy tour customer in priority order, we consider inserting

the customer into the other tours with appropriate vehicle type and sufficient capacity. If

a vehicle can service the customer, we try to find the best feasible position for it in the

tour. If we assign any customers from the dummy tour, we return to FBLS-1 and attempt

to improve the solution further.

3.3.2 Global Best Local Search

The global best local search (GBLS) is similar to the FBLS algorithm; however,

we check all possible moves in the current neighborhood before choosing the best move.

As before, we consider only feasible single customer insertion moves. We stop when we

cannot find any feasible improving moves indicating we have reached a local optimum.

The logic flow of the global best local search algorithm is:

Step GBLS-1: Check single customer insertions within tours.

Step GBLS-2: Check single customer insertions between tours.

Step GBLS-3: Make the best move found.

Step GBLS-4: If we found an improving move, try to assign customers from the dummy

tour.

Step GBLS-5: If we found an improving move, return to GBLS-1.

Step GBLS-6: If we did not find an improving move, return the solution, STOP.

3.3.2.1 Check Insertions within Tours

Considering each customer in each tour, we note the current cost to service that

customer using equations (10), (11), and (12). We then determine the cost of inserting

the customer into every other position in the current tour.

27

The current cost of service minus the new cost of service represents the savings

achieved by making the move. If the amount saved is positive and greater than the best

savings found so far, we check time window/time wall and vehicle endurance feasibility.

If the move is feasible, the move is retained as the best so far. If we cannot find any

feasible improving moves for the customer, we check the next customer.

When we cannot find any feasible improving moves for any of the customers in

the tour, we check the next tour. When we have checked all insertions within tours, we

check insertions between tours.

3.3.2.2 Rearranging Customers between Tours

Starting with the first customer in the first tour, and considering all customers in

all tours, we try to find a cheaper position for the customer in another tour whose vehicle

is appropriate for the customer and has sufficient capacity. We evaluate the current cost

of service for the customer using equations (10), (11), and (12).

If the vehicle is capable of servicing the customer, we calculate the new cost of

service for each position in the tour starting with the first position. If the amount saved is

positive and greater than the best savings found so far, we check time window/time wall

and vehicle endurance feasibility. If the move is feasible, the move is retained as the best

so far. If we cannot find any feasible improving moves for the customer, we check the

next customer.

When we have checked all insertion moves within and between tours, we make

the best move found. If we did not find a feasible improving move, we have reached a

28

local optimum and we return the solution. If we were able to make an improving move,

we attempt to empty the dummy tour.

3.3.2.3 Assigning Customers from the Dummy Tour

Assigning customers from the dummy tour is accomplished exactly as in the

FBLS algorithm explained in section 3.3.1.3.

3.3.3 Global Best Tabu Search

The global best tabu search (GBTS) is similar to the global best local search

algorithm; however, we implement a tabu list to escape local optimum. The algorithm

considers the same insertion moves as the first best and global best local search

algorithms.

At every iteration, all possible insertion moves are evaluated and the best feasible

non-tabu move is chosen. The best move in this case may actually be non-improving.

The algorithm continues for a minimum of 100 iterations. If the algorithm has found a

new best solution within the final 10 iterations, the search continues until 10 iterations are

performed without improving the best solution. We choose these values based on

empirical testing. The flow of the global best tabu search algorithm is:

Step GBTS-1: Check single customer insertions within tours.

Step GBTS-2: Check single customer insertions between tours.

Step GBTS-3: Check the tabu status of the best move found. If move is tabu and does

not produce a solution better than the best found so far, check the next best

move. If all feasible moves are tabu, the oldest half of the tabu list is

discarded and the moves are checked again.

29

Step GBTS-4: After the move is made, it is added to the tabu list.

Step GBTS-5: Check to see if the new solution is the best found so far.

Step GBTS-6: If an improving move was made, try to assign customers from the dummy

tour.

Step GBTS-7: If we have not reached 100 iterations or we have found a new best solution

in the last 10 iterations, return to GBTS-1.

3.3.3.1 Check Insertions within Tours

Checking for insertion moves within tours is the same as in the global best local

search algorithm described in section 3.3.2.1. However, we accept non-improving

moves, i.e. negative savings, and since our best move may be tabu, we retain the top 150

moves.

3.3.3.2 Rearranging Customers between Tours

Again, this is done the same as in the global best local search algorithm described

in section 3.3.2.2 with the exceptions noted in the previous paragraph.

3.3.3.3 Checking the Tabu Status

We use the customer number to denote the tabu status of a move. The length of

the tabu list is set to 35% of the number of customers. How a move is denoted, the length

of the tabu list, and the neighborhood size are closely tied. These factors must be

balanced to avoid cycling and still conduct a thorough exploration of the search space

near the jump point. We chose to set these factors based on empirical testing.

30

Aspiration criterion is a TS technique that allows a move to be made in spite of its

tabu status. A very common aspiration criterion is to accept the move if that move leads

to a new best solution. We use this criterion in our GBTS algorithm. If the top 150

moves found are all tabu and do not meet the aspiration criterion, we discard the oldest

half of the tabu list.

3.3.3.4 Assigning Customers from the Dummy Tour

Assigning customers from the dummy tour is accomplished exactly as in the

FBLS algorithm explained in section 3.3.1.3.

3.3.4 Reactive Tabu Search

The reactive tabu search (RTS) algorithm is identical to the GBTS algorithm with

two exceptions. The first difference is the number of iterations. The RTS algorithm

executes for a minimum of 2000 iterations and continues until 200 iterations are

performed without finding a new best solution.

The second, and key, difference is that we adjust the length of the tabu list based

on the productivity of the search. If we have performed 100 iterations without finding a

new best solution, we increase the length of the tabu list by one. We continue increasing

the length of the tabu list at each iteration until we find a new best solution or the length

of the tabu list reaches 50% of the number of customers. At this point, we reset the

length of the tabu list to 35% of the number of customers. As in the GBTS algorithm, if

the top 150 moves found are all tabu and do not meet the aspiration criteria, we discard

the oldest half of the tabu list. The flow of the reactive tabu search algorithm is:

31

Step RTS-1: If we have performed 100 iterations without finding a new best solution

and the length of the tabu list is less than 50% of the number of customers,

increase the length of the tabu list by 1. If the length of the tabu list is

50% of the number of customers, reset the length to 35% of the number of

customers.

Step RTS-2: Check single customer insertions within tours.

Step RTS-3: Check single customer insertions between tours.

Step RTS-4: Check the tabu status of the best move found. If move is tabu and does

not produce a solution better than the best found so far, check the next best

move. If all feasible moves are tabu, the oldest half of the tabu list is

discarded and the moves are checked again.

Step RTS-5: After the move is made, add it to the tabu list.

Step RTS-6: Check to see if the new solution is the best found so far. If so, reset the

length of the tabu list to its original length.

Step RTS-7: If an improving move was made, try to assign customers from the dummy

tour.

Step RTS-8: If we have not reached 2000 iterations or we have found a new best

solution in the last 200 iterations, return to RTS-1.

3.4 The Jump Search Algorithm

Our JS algorithm uses the tour construction heuristic described in section 3.2 to

generate up to 176 unique solutions. As each solution is generated, JS stores the solution

in an array sorted in descending order by solution quality. JS then initializes a local

32

search using one of the local search algorithms described in section 3.3 for each jump

point starting from the first.

For the FBLS algorithm, we perform local searches from each jump point until 25

jump points are searched without improving the best solution found. For the GBLS

algorithm, we perform local searches from each jump point until 15 jump points are

searched without improving the best solution found. For the GBTS algorithm, we

perform searches from each jump point until 10 jump points are searched without

improving the best solution found. These values are established through empirical testing

described in section 4.4. The RTS algorithm explores only a single jump point, either the

best jump point found (RTS-best) or a single generated jump point (RTS-one).

3.5 Conclusion

We design a representation of the solution that makes it easier to incorporate

multiple heterogeneous vehicles and multiple depots. This solution also implicitly

enforces the standard tour (2), binary (6), and sub-tour breaking (7) constraints.

Our tour construction algorithm builds multiple high-quality jump point solutions.

We then use three different local search algorithms, first best local search (FBLS), global

best local search (GBLS), and global best tabu search (GBTS) to explore these jump

points.

33

Chapter 4. Results

4.1 Description of Solomon Instances

We use the Solomon MVH VRP TW problem instances to test the performance of

JTS against published solutions and to establish our parameter values. The Solomon

problems were randomly generated to model several factors common to VRP TW

problems. The factors modeled include geographic positioning, number of customers a

vehicle can service, and time window characteristics such as the tightness of the time

windows and the percentage of customers with time windows.

The 56 Solomon problems are divided into six problem sets: Rl, Cl, RC1, R2,

C2, and RC2. Each problem set has between 8 and 12 problems . Each problem contains

data for 100 customers. The problems in sets Rl and R2 contain customers with random

geographic coordinates. Sets Cl and C2 contain customers with clustered geographic

coordinates. Sets RC1 and RC2 contain customers with both random and clustered

coordinates.

Each problem set contains problems in which 25%, 50%, 75%, or 100% of the

customers have time windows. In sets Rl, Cl, and RC1, the time windows are short and

vehicle capacities small. In sets R2, C2, and RC2, the time windows are long and

vehicles capacities large allowing each vehicle to service more customers (Solomon,

1987).

34

4.2 Tour Construction Parameters

Our first task is to determine if all of the parameter values suggested by Rochat

and Semet (1994) are needed. If any parameter is unnecessary, we can avoid generating

all 176 starting solutions with the tour construction heuristics. We solve each instance of

the Solomon test problems with the jump search first best (JFB), jump search global best

(JGB), and jump search tabu search (JTS) algorithms. We note the parameter values used

to generate the best solution found for each problem by each algorithm.

If each parameter value has the same probability to generate the best solution, we

would expect the values associated with the best solutions to appear in the same

percentage as they appear in the parameter sets. Since we know the expected distribution

of the parameter values, we can perform a goodness-of-fit test to determine if the actual

distribution matches the expected distribution.

We do not wish to tune our algorithm specifically to the Solomon problem sets.

Therefore, we require a high degree of confidence, 95% overall, before rejecting the

hypothesis that the actual distribution of parameter values is equal to the expected

distribution. Parameter oc2 is derived from parameter al and has the same distribution.

Since we have four parameter distributions and three algorithms, we must perform each

hypothesis test at 99.58% to have a 95% percent confidence overall.

Table 1 contains the expected distribution for each parameter and the actual

distribution that produced the best solutions for each algorithm. When more than one

parameter set produced the same best solution, a fractional count is added to the value

cell. In all cases, the test statistic, X2, is less than the critical value so we fail to reject the

35

hypothesis that the data values fit the expected distribution. Therefore, we retain all

parameter values for our algorithm.

Table 1 - Parameter Value Goodness-of-fit Test

parameter ori JFB JGB JTS expected value
0.0 2.37 2.08 0.72 5.09
0.1 5.58 4.15 3.80 5.09
0.2 3.80 4.56 4.01 5.09
0.3 2.16 2.71 3.66 5.09
0.4 2.85 4.45 3.66 5.09
0.5 7.16 2.00 8.45 5.09
0.6 1.92 3.29 6.03 5.09
0.7 9.01 9.67 5.93 5.09
0.8 6.44 7.55 5.38 5.09
0.9 5.54 5.54 5.33 5.09
1.0 9.12 9.98 9.04 5.09
X1

X2(10,.0042)
13.93
25.68

15.75
25.68

10.74
25.68

parameter \i JFB JGB JTS expected value
0.25
0.50
0.75
1.00

4.61
5.02
4.71
41.66

3.39
5.72
10.10
36.75

9.31
6.83
5.97
33.89

7
7
7

35
X2

X2(3,.0042)
3.39
13.21

3.56
13.21

0.95
13.21

parameter A, JFB JGB JTS expected value
0.00 1.33 1.67 2.53 7
0.50 6.48 4.71 5.74 7
1.00 9.22 12.69 9.72 7
1.25 4.61 3.39 9.31 7
1.50 18.90 14.39 13.45 14
1.75 4.71 10.10 5.97 7
2.00 10.75 8.98 9.28 7

X2(6,.0042)
10.63
18.98

13.24
18.98

5.81
18.98

init method JFB JGB JTS Expected
0.0
1.0
xz

*2(1,.0042)

38.14
17.86
7.34
8.20

32.18
23.82
1.25
8.20

34.33
21.67
2.86
8.20

28
28

36

4.3 Tabu List Length

Having established our tour construction parameters, we next determine the

length of our tabu list. Fixing the number of iterations to a base of 100 and increases of

10 as described in section 3.3.3, we vary the length of the tabu list from 5% to 50% of the

number of customers in 5% increments.

Table 2 contains the sum of the average distances for each problem set produced

by the JTS algorithm for problems with 25, 50,75, and 100 customers. The 25, 50, and

75 customer problems are generated by using the first 25,50, and 75 customers of the

100 customer problems. To simplify comparisons, we minimized distance only when

solving each problem. The tabu list length appears in the column on the left.

Since we believe the UAV problems will typically contain at least 100 customers,

we give more credibility to the larger problems. While the difference in total distance is

relatively small across the different tabu list lengths, there is a definite sweet spot

between 30% and 40%. Therefore, we set the initial tabu list length to 35% of the

number of customers.

Table 2 - Tabu Length Test

Length 25 Customers 50 Customers 75 Customers 100 Customers
5% 2031.77 3662.49 5242.55 6256.46
10% 2025.41 3646.82 5213.47 6219.27
15% 2021.52 3640.00 5187.80 6202.68
20% 2023.99 3628.76 5170.97 6193.59
25% 2017.30 3606.87 5173.58 6186.90
30% 2014.27 3614.20 5182.11 6179.16
35% 2006.05 3608.99 5166.91 6179.06
40% 2003.72 3597.96 5184.97 6178.50
45% 2005.87 3597.00 5161.07 6187.97
50% 2010.41 3596.24 5182.01 6200.39

37

4.4 Jump Points

For the Solomon problem sets, the tour construction heuristic generates an

average of 141.82 unique jump points. With 176 different parameter sets, the average

percentage of duplicate jump points generated is 19%. Recall the generated jump points

are ordered. When all jump points are explored, the average jump point index leading to

the best solution is 42.84 for the JFB algorithm, 41.66 for the JGB algorithm, and 42.05

for the JTS algorithm. This implies the better jump points lead to the best solutions.

Table 3 - Average Best Jump Point Index

JFB JGB JTS
average best jump point 42.84 41.66 42.05

standard deviation 43.46 48.68 42.06

Since timeliness of the solution is important to us, we do not want to explore all

jump points. Rather than explore a fixed number of jump points, we establish the number

of jump points to explore without finding a new best solution. If we explore this threshold

number of jump points without improving the best solution so far, the overall search

process is halted. By setting this threshold higher, we may improve the solution;

however, we will definitely increase the runtime of the algorithm. This tradeoff between

solution time and quality is a common tradeoff in heuristic implementation.

Table 4 contains the average distance found at different jump point thresholds for

the JFB algorithm. The column on the far right shows how much we can improve the

solution if we simply continued on from that threshold point to explore all points. When

we reach a point within 1% of the best distance, we feel we have explored a sufficient

38

number of jump points. For the JFB algorithm, this point is reached with a threshold of

25 jump points.

Table 4 - Jump Point Thresholds for JFB

Jump Point % Over
Threshold Rl Cl RC1 R2 C2 RC2 Total Best

1 1279.43 845.39 1439.83 1017.80 600.08 1264.76 6447.29 3.61%
5 1271.39 842.20 1431.39 1010.43 598.53 1237.03 6390.97 2.70%
10 1269.77 841.11 1427.81 1003.87 598.53 1199.49 6340.58 1.89%
15 1265.75 841.11 1425.02 997.78 598.53 1186.48 6314.67 1.48%
20 1265.75 841.11 1421.64 994.18 598.53 1169.18 6290.39 1.09%
25 1262.55 834.82 1421.64 988.88 598.53 1169.18 6275.60 0.85%
30 1260.94 834.82 1421.64 982.68 598.53 1165.70 6264.31 0.67%
all 1252.69 833.97 1419.90 976.26 598.53 1141.41 6222.76

Table 5 contains the same data for the JGB algorithm. For the JGB algorithm, we

are within 1% of the best with a threshold of 15 jump points.

Table 5 - Jump Point Thresholds for JGB

Jump Point % Over
Threshold Rl

1273.49
Cl RC1 R2 C2 RC2 Total Best

1 834.28 1444.23 1018.93 595.27 1226.34 6392.54 2.87%
5 1259.86 833.19 1435.39 1004.8 593.16 1203.08 6329.48 1.85%
10 1259.24 833.19 1426.77 999.51 593.16 1176.37 6288.24 1.19%
15 1256.59 833.19 1426.77 986.36 593.16 1175.17 6271.24 0.91%
20 1254.13 833.19 1422.21 986.36 593.16 1171.72 6260.77 0.75%
25 1253.6 833.19 1418.24 985.54 593.16 1168.81 6252.54 0.61%
30 1252.07 833.19 1418.24 984.14 593.16 1166.95 6247.75 0.54% all 1244.96 833.19 1417.27 973.76 593.16 1152.05 6214.39

we Table 6 contains the same data for the JTS algorithm. For the JTS algorithm,

are within 1 % of the best with a threshold of 25 jump points. However, the JTS

algorithm takes much longer to explore each jump point than either of the other

algorithms. Since we believe the UAV problems will have a minimum of 100 customers,

39

we would like the average total solution time for the 100 customer problems to be under

one minute on a Pentium II400 MHz processor.

Table 6 - Jump Point Thresholds for JTS

Jump Point % Over
Threshold Rl Cl RC1 R2 C2 RC2 Total Best

1 1239.26 832.91 1410.55 999.48 593.74 1186.38 6262.32 2.68%
5 1231.15 832.91 1404.57 980.38 593.16 1146.76 6188.93 1.48%
10 1230.27 832.91 1399.79 976.17 593.16 1146.76 6179.06 1.32%
15 1228.53 832.77 1397.84 971.15 593.16 1146.76 6170.21 1.17%
20 1228.53 832.77 1396.09 966.74 593.16 1146.76 6164.05 1.07%
25 1227.45 832.77 1396.09 958.96 593.16 1138.09 6146.52 0.78%
30 1227.45 832.77 1396.09 958.74 593.16 1138.09 6146.30 0.78%
all 1222.86 832.77 1389.86 950.36 593.16 1109.69 6098.70

For the JTS algorithm, the number of iterations performed on each jump point and

the number of jump points explored determine the total solution time of the algorithm.

These factors also provide the balance between intensification and diversification. Table

7 contains the average distances for three iteration and threshold combinations with the

desired average solution time.

Table 7 - Threshold / Iteration Combinations for JTS

Jump
Point

Threshold Iterations Rl Cl RC1 R2 C2 RC2 Total
10 100 1230.27 832.91 1399.79 976.17 593.16 1146.76 6179.06
15 75 1230.82 832.77 1401.31 972.88 593.16 1151.72 6182.65

.20 50 1234.61 832.77 1406.10 972.48 593.16 1148.66 6187.78

Although there is no statistical difference between the different combinations, our

intuition leads us to choose a threshold of 10 jump points and a base of 100 iterations.

40

4.5 Heuristic Analysis

To compare the performance of our algorithms, we solved the Solomon problem

sets with each algorithm attempting to minimize distance. The distances produced by the

algorithms are not normally distributed, so we use non-parametric techniques for

comparison. Table 8 contains the minimum distance found for each problem by each

algorithm.

We use the sign test to compare our algorithms. We perform a pair-wise

comparison of the algorithms two at a time and count the number of occurrences where

algorithm one is better than algorithm two. We determine the probability of this count

based on a binomial distribution with 50% probability. If the two algorithms are equal in

efficiency, we would expect each algorithm to have an equal chance of producing the

better answer.

With the exception of the JTS algorithm, none of the algorithms proved

statistically superior to the others. The JTS algorithm proved statistically superior to the

JFB and JGB algorithms with p-values of less than 0.0001 supporting our hypothesis that

exploring the jump points beyond the first local optimal improves the algorithm.

41

Table 8 - Minimum Distances Found by All Algorithms

Problem JFB JGB JTS RTS - best RTS - one
rlOl 1712.64 1704.81 1678.37 1707.18 1734.13
rl02 1535.42 1529.47 1485.33 1500.62 1482.81
rl03 1289.28 1296.38 1266.67 1247.28 1240.34
rl04 1068.62 1056.90 1032.15 1066.83 1085.20
rl05 1433.37 1433.89 1404.25 1446.50 1389.22
rl06 1315.17 1296.50 1291.17 1304.70 1332.21
rl07 1145.48 1159.27 1123.80 1147.27 1106.34
rl08 1049.11 1030.68 992.83 1063.37 1063.37
rl09 1259.32 1228.25 1215.47 1276.89 1271.51
rllO 1171.88 1170.23 1153.36 1162.44 1212.26
rill 1137.59 1130.52 1107.82 1135.11 1097.74
rll2 1032.75 1042.18 1012.07 1001.88 1058.33

Rl Average 1262.55 1256.59 1230.27 1255.01 1256.12
clOl 828.93 828.93 828.93 828.93 828.93
cl02 828.93 828.93 828.93 936.72 928.01
cl03 839.57 831.86 829.27 829.27 836.67
cl04 871.34 864.37 864.37 859.39 843.65
cl05 828.93 828.93 828.93 828.93 828.93
cl06 828.93 828.93 828.93 828.93 862.26
cl07 828.93 828.93 828.93 828.93 828.93
cl08 828.93 828.93 828.93 848.93 828.93
cl09 828.93 828.93 828.93 828.93 828.93

Cl Average 834.82 833.19 832.91 846.55 846.14
rclOl 1694.74 1694.75 1693.47 1726.92 1690.05
rcl02 1515.44 1507.35 1500.68 1520.47 1522.35
re 103 1384.37 1384.71 1362.87 1331.54 1364.30
rcl04 1221.98 1238.79 1216.71 1181.71 1220.52
re 105 1604.82 1612.19 1558.09 1611.83 1598.35
rcl06 1435.26 1428.87 1419.05 1461.27 1443.11
rcl07 1303.18 1334.34 1280.41 1270.37 1376.36
rcl08 1213.36 1213.16 1167.04 1233.66 1197.25

RC1 Average 1421.64 1426.77 1399.79 1417.22 1426.54
r201 1291.00 1281.64 1324.45 1298.40 1329.24
r202 1120.05 1140.40 1127.76 1133.52 1108.41
r203 969.90 976.44 967.56 1032.61 947.55
r204 830.48 817.28 810.44 803.14 839.18
r205 1126.92 1134.40 1073.52 1046.21 1098.40
r206 983.72 991.80 996.07 990.65 972.62
r207 905.39 904.94 894.59 884.83 896.74
r208 784.72 770.42 749.85 748.28 784.46
r209 1010.87 986.97 969.93 952.30 947.99
r210 991.23 979.51 966.67 981.90 1050.54
r211 863.43 866.17 857.06 899.51 832.97

R2 Average 988.88 986.36 976.17 979.21 982.55
c201 591.55 591.55 591.55 591.55 591.55
c202 591.55 591.55 591.55 591.55 591.55
c203 628.81 617.61 617.61 591.17 591.17
c204 622.34 590.59 590.59 590.59 878.62
c205 588.87 588.87 588.87 588.87 588.87
c206 588.49 588.49 588.49 588.49 588.49
c207 588.28 588.28 588.28 588.28 588.28
c208 588.32 588.32 588.32 588.32 588.32

C2 Average 598.53 593.16 593.16 589.85 625.86
rc201 1449.02 1480.89 1409.22 1578.30 1504.80
rc202 1327.54 1305.57 1305.57 1383.43 1248.23
rc203 1107.86 1142.96 1102.81 1131.34 1182.34
rc204 880.26 917.30 876.59 913.57 913.57
rc205 1342.63 1316.62 1315.15 1433.18 1437.76
rc206 1194.53 1218.82 1172.22 1289.79 1187.08
rc207 1106.25 1134.32 1123.77 1193.56 1065.96
rc208 945.37 884.84 868.76 868.76 894.58

RC2 Average 1169.18 1175.17 1146.76 1223.99 1179.29
Overall Average 1054.58 1053.37 1037.77 1058.91 1059.83

42

As expected, the JFB and JGB algorithms are both statistically faster in solve time

with p-values of less than 0.0001. Table 9 contains the average CPU time to find the best

solution and the average total solution CPU time (in seconds on a Pentium II400 MHz

processor) for all algorithms. All algorithms are coded using Java 1.2.

Table 9 - Average Solve Times for All Algorithms

Average
Time (sees) JFB JGB JTS RTS - best RTS - one
Best Found

Total
19.50
26.40

19.58
33.79

20.32
56.49

19.54
55.54

12.33
32.33

The JTS proved statistically superior to both RTS algorithms with p-values of

0.044 for RTS-best and 0.036 for RTS-one. This supports our hypothesis that multiple

starting points are an effective diversification and intensification strategy for tabu search.

We did not find any statistical difference in best found or total run times between

the JTS and the RTS-best algorithm. The RTS-one algorithm is statistically faster than

the JTS algorithm, as RTS-one does not generate multiple jump points.

4.6 Comparison to O'Rourke's Reactive Tabu Search Algorithm

Admittedly, our RTS algorithm lacks any complex or sophisticated search

strategies. We compare our results to those produced by O'Rourke and Ryer's RTS

algorithm which incorporates a reactive penalty scheme as well as a reactive tabu list

length (O'Rourke 1999, Ryer 1999). Their algorithm is written in Java and executed on a

Pentium II 400MHz processor just as our JTS algorithm.

Tables 10, 11, 12 contain the minimum distances found, the time the best solution

was found, and total solve time for both O'Rourke and Ryer's RTS and our JTS

43

algorithms. The 25 and 50 customer problems are generated by using the first 25 and 50

customers of the 100 customer problems. Distances between customers are truncated to

the tenths digit before each problem is solved. From the tables, it is clear JTS achieves

the same quality of solutions with significant savings in computational effort.

The first column shows the problem number. Four columns a provided for each

algorithm denoting the minimum distance found, number of vehicles used, the CPU time

the best solution was found (in seconds), and the total CPU run time of the algorithm.

O'Rourke and Ryer only provide an approximate average total time for each problem

size. The final three columns show the percent difference for the JTS algorithm from

O'Rourke and Ryer in terms of minimum distance, time best found, and total run time.

44

Table 10 - Comparison on Solomon 25 Customer Problems

25 Customer
Problems O'Rourke & Ryer Jump Tabu Search Percent Difference

Number Time Approx. Number Time Time
of Best Total of Best Total Best Total

Distance Vehicles Found Time Distance Vehicles Found Time Distance Found Time
rlOl 617.1 8.0 4 28 617.1 8.0 0.38 1.15 0.0% -90.5% -95.9%
rl02 547.1 7.0 1 28 547.1 7.0 0.38 1.87 0.0% -62.0% -93.3%
rl03 454.1 5.0 1 28 463.5 6.0 0.44 1.53 2.1% -56.0% -94.5%
rl04 416.9 4.0 2 28 436.0 5.0 0.33 1.82 4.6% -83.5% -93.5%
rl05 530.5 6.0 1 28 530.5 6.0 0.44 1.15 0.0% -56.0% -95.9%
rl06 465.4 5.0 12 28 465.4 5.0 0.38 2.09 0.0% -96.8% -92.5%
rl07 424.3 4.0 24 28 424.3 4.0 0.55 1.76 0.0% -97.7% -93.7%
rl08 397.3 4.0 1 28 397.3 4.0 0.60 1.65 0.0% -40.0% -94.1%
rl09 441.3 5.0 1 28 441.3 5.0 0.44 1.49 0.0% -56.0% -94.7%
rllO 444.1 5.0 1 28 444.1 5.0 0.55 1.31 0.0% -45.0% -95.3%
rill 428.8 4.0 3 28 438.3 4.0 0.44 1.82 2.2% -85.3% -93.5%
rll2 393.0 4.0 1 28 402.0 4.0 0.55 1.75 2.3% -45.0% -93.8%

Rl Average 463.3 5.1 4.3 28.0 467.2 5.3 0.5 1.6 0.9% -67.8% -94.2%

clOl 191.3 3.0 0 28 191.3 3.0 0.11 1.16 0.0% N/A -95.9%
cl02 190.3 3.0 1 28 190.3 3.0 0.55 1.97 0.0% -45.0% -93.0%
cl03 190.3 3.0 1 28 190.3 3.0 0.55 1.82 0.0% -45.0% -93.5%
cl04 186.9 3.0 8 28 190.0 3.0 0.61 1.65 1.7% -92.4% -94.1%
cl05 191.3 3.0 1 28 191.3 3.0 0.33 1.21 0.0% -67.0% -95.7%
cl06 191.3 3.0 1 28 191.3 3.0 0.16 1.21 0.0% -84.0% -95.7%
cl07 191.3 3.0 0 28 191.3 3.0 0.38 1.26 0.0% N/A -95.5%
cl08 191.3 3.0 4 28 191.3 3.0 0.55 1.37 0.0% -86.3% -95.1%
cl09 191.3 3.0 2 28 191.3 3.0 0.33 1.60 0.0% -83.5% -94.3%

Cl Average 190.6 3.0 2.0 28.0 190.9 3.0 0.4 1.5 0.2% -71.9% -94.7%

rclOl 461.1 4.0 2 28 461.1 4.0 0.44 1.21 0.0% -78.0% -95.7%
rcl02 351.7 3.0 1 28 351.8 3.0 0.22 1.32 0.0% -78.0% -95.3%
rcl03 332.8 3.0 2 28 332.8 3.0 0.33 1.43 0.0% -83.5% -94.9%
re 104 306.6 3.0 1 28 308.7 3.0 0.49 1.37 0.7% -51.0% -95.1%
re 105 411.2 4.0 1 28 416.1 4.0 0.05 1.21 1.2% -95.0% -95.7%
re 106 345.5 3.0 1 28 345.5 3.0 0.39 1.32 0.0% -61.0% -95.3%
re 107 298.3 3.0 2 28 298.3 3.0 0.55 1.43 0.0% -72.5% -94.9%
re 108 294.5 3.0 3 28 294.5 3.0 0.55 1.48 0.0% -81.7% -94.7%

RC1 Average 350.2 3.3 1.6 28.0 351.1 3.3 0.4 1.3 0.2% -75.1% -95.2%

Overall 347.5 3.9 2.9 28.0 349.5 4.0 0.4 1.5 0.5% -71.0% -94.7%

45

Table 11 - Comparison on Solomon 50 Customer Problems

50 Customer
Problems O'Rourke & Ryer Jump Search Percent Difference

Number Time Approx. Number Time Time
of Best Total of Best Total Best Total

Distance Vehicles Found Time Distance Vehicles Found Time Distance Found Time
rlOl 1043.8 12.0 9 100 1051.4 13.0 1.32 5.77 0.7% -85.3% -94.2%
rl02 909.0 11.0 82 100 916.0 12.0 2.03 6.37 0.8% -97.5% -93.6%
rl03 778.7 9.0 87 100 781.5 9.0 2.31 7.80 0.4% -97.3% -92.2%
rl04 637.4 6.0 69 100 635.8 6.0 1.54 8.29 -0.3% -97.8% -91.7%
rl05 901.6 9.0 16 100 916.9 10.0 1.54 6.81 1.7% -90.4% -93.2%
rl06 793.0 8.0 99 100 798.5 8.0 2.31 6.54 0.7% -97.7% -93.5%
rl07 711.1 7.0 79 100 723.1 7.0 0.66 6.76 1.7% -99.2% -93.2%
rl08 617.7 6.0 78 100 630.2 6.0 2.19 13.73 2.0% -97.2% -86.3%
rl09 786.7 8.0 61 100 814.9 9.0 2.03 6.75 3.6% -96.7% -93.3%
rllO 707.8 7.0 84 100 697.0 7.0 2.04 7.20 -1.5% -97.6% -92.8%
rill 716.6 7.0 76 100 722.0 7.0 2.48 13.02 0.8% -96.7% -87.0%
rll2 635.0 6.0 68 100 652.3 7.0 2.75 7.53 2.7% -96.0% -92.5%

Rl Average 769.9 8.0 67.3 100.0 778.3 8.4 1.9 8.0 1.1% -95.8% -92.0%

clOl 362.4 5.0 3 100 362.4 5.0 1.75 5.65 0.0% -41.7% -94.4%
cl02 361.4 5.0 9 100 361.4 5.0 2.15 5.72 0.0% -76.1% -94.3%
cl03 361.4 5.0 87 100 361.4 5.0 2.14 6.59 0.0% -97.5% -93.4%
cl04 382.8 5.0 79 100 364.9 5.0 2.85 6.20 -4.7% -96.4% -93.8%
cl05 362.4 5.0 19 100 362.4 5.0 2.04 5.94 0.0% -89.3% -94.1%
cl06 362.4 5.0 4 100 362.4 5.0 1.92 5.65 0.0% -52.0% -94.4%
cl07 362.4 5.0 6 100 362.4 5.0 1.76 5.82 0.0% -70.7% -94.2%
cl08 362.4 5.0 4 100 362.4 5.0 1.93 6.05 0.0% -51.8% -94.0%
cl09 362.4 5.0 26 100 362.4 5.0 1.59 5.82 0.0% -93.9% -94.2%

Cl Average 364.4 5.0 26.3 100.0 362.5 5.0 2.0 5.9 -0.5% -74.4% -94.1%

rclOl 946.8 8.0 60 100 948.9 8.0 1.98 6.10 0.2% -96.7% -93.9%
rcl02 831.8 7.0 60 100 843.4 8.0 1.43 7.09 1.4% -97.6% -92.9%
rcl03 710.9 6.0 94 100 779.6 7.0 2.14 5.77 9.7% -97.7% -94.2%
rcl04 546.5 5.0 18 100 548.2 5.0 2.14 5.16 0.3% -88.1% -94.8%
re 105 855.3 8.0 4 100 859.8 8.0 0.87 10.32 0.5% -78.3% -89.7%
re 106 723.2 6.0 58 100 765.6 6.0 0.94 6.21 5.9% -98.4% -93.8%
re 107 644.4 6.0 36 100 652.5 6.0 1.43 5.55 1.3% -96.0% -94.5%
re 108 598.1 6.0 58 100 603.9 6.0 2.58 9.06 1.0% -95.6% -90.9%

RC1 Average 732.1 6.5 48.5 100.0 750.2 6.8 1.7 6.9 2.5% -93.5% -93.1%

Overall 633.6 6.7 49.4 100.0 641.5 6.9 1.9 7.1 1.0% -88.5% -92.9%

46

Table 12 - Comparison on Solomon 100 Customer Problems

100 Customer
Problems O'Rourke & Ryer Jump Search Percent Difference

Number Time Approx. Number Time Time
of Best Total of Best Total Best Total

Distance Vehicles Found Time Distance Vehicles Found Time Distance Found Time
rlOl 1676.2 20.0 414 550 1672.8 20.0 8.41 37.90 -0.2% -98.0% -93.1%
rl02 1502.4 19.0 96 550 1493.9 19.0 9.61 41.64 -0.6% -90.0% -92.4%
rl03 1265.0 15.0 228 550 1245.6 15.0 8.29 58.66 -1.5% -96.4% -89.3%
rl04 1039.6 12.0 338 550 1038.7 12.0 11.92 63.05 -0.1% -96.5% -88.5%
rl05 1399.4 16.0 378 550 1397.5 15.0 8.13 40.76 -0.1% -97.8% -92.6%
rl06 1268.4 14.0 491 550 1286.3 13.0 9.33 34.93 1.4% -98.1% -93.6%
rl07 1129.0 13.0 406 550 1086.8 11.0 9.61 38.56 -3.7% -97.6% -93.0%
rl08 956.8 10.0 565 550 990.7 11.0 12.02 46.74 3.5% -97.9% -91.5%
rl09 1181.0 14.0 311 550 1223.7 12.0 9.39 57.78 3.6% -97.0% -89.5%
rllO 1133.2 13.0 328 550 1139.0 12.0 10.98 38.39 0.5% -96.7% -93.0%
rill 1077.3 12.0 491 550 1096.4 12.0 10.93 48.17 1.8% -97.8% -91.2%
rll2 971.6 11.0 460 550 978.4 11.0 12.63 46.63 0.7% -97.3% -91.5%

Rl Average 1216.7 14.1 375.5 550.0 1220.8 13.6 10.1 46.1 0.4% -96.7% -91.6%

clOl 827.3 10.0 43 550 827.3 10.0 6.86 28.56 0.0% -84.0% -94.8%
cl02 827.3 10.0 253 550 827.3 10.0 7.58 25.70 0.0% -97.0% -95.3%
cl03 828.9 10.0 535 550 827.4 10.0 9.73 25.44 -0.2% -98.2% -95.4%
cl04 950.0 10.0 509 550 863.6 10.0 11.31 29.98 -9.1% -97.8% -94.5%
cl05 827.3 10.0 65 550 827.3 10.0 0.77 27.02 0.0% -98.8% -95.1%
cl06 827.3 10.0 55 550 827.3 10.0 8.24 26.09 0.0% -85.0% -95.3%
cl07 827.3 10.0 210 550 827.3 10.0 2.80 28.12 0.0% -98.7% -94.9%
cl08 827.3 10.0 321 550 827.3 10.0 8.13 24.22 0.0% -97.5% -95.6%
cl09 853.3 10.0 463 550 827.3 10.0 6.21 26.64 -3.0% -98.7% -95.2%

Cl Average 844.0 10.0 272.7 550.0 831.3 10.0 6.8 26.9 -1.4% -95.1% -95.1%

rclOl 1669.9 16.0 381 550 1688.2 16.0 6.86 39.21 1.1% -98.2% -92.9%
rcl02 1498.4 15.0 419 550 1510.9 15.0 8.40 36.52 0.8% -98.0% -93.4%
rcl03 1363.6 13.0 270 550 1320.7 12.0 10.60 37.74 -3.1% -96.1% -93.1%
rcl04 1179.2 11.0 308 550 1206.8 11.0 10.76 30.75 2.3% -96.5% -94.4%
re 105 1557.4 15.0 473 550 1557.3 15.0 6.37 36.03 0.0% -98.7% -93.4%
re 106 1432.8 13.0 434 550 1415.2 13.0 7.58 53.72 -1.2% -98.3% -90.2%
re 107 1266.1 12.0 417 550 1269.7 12.0 9.99 54.37 0.3% -97.6% -90.1%
re 108 1175.1 12.0 475 550 1170.4 11.0 11.37 30.16 -0.4% -97.6% -94.5%

RC1 Average 1392.8 13.4 397.1 550.0 1392.4 13.1 9.0 39.8 0.0% -97.6% -92.8%

Overall 1149.6 12.6 349.6 550.0 1147.3 12.3 8.8 38.4 -0.3% -96.5% -93.0%

47

4.7 Comparison to Best Known Solutions for Solomon's MVRPTW Instances

More commonly, the Solomon instances are solved by minimizing vehicles first,

then total distance. Table 13 contains the solutions produced by the JTS algorithm based

on this criterion. The solutions are compared to the best known solutions for each of the

problems. Minimum vehicles is achieved by attempting to solve each problem with the

amount of vehicles used by the best known solution for that problem. If JTS is unable to

find a solution that visits all of the customers with the minimum number of vehicles, the

number of vehicles is increased by one until JTS can find a complete solution.

Columns 2 and 3 contain the minimum distance and number of vehicles for the

best known solution. Column 4 contains a reference for the source of the best known

solution. Columns 5 and 6 contain the minimum distance and number of vehicles found

by JTS. The last two columns show the percent difference in minimum distance and

number of vehicles for JTS over the best known solutions. The best known solutions to

the Cl problem set are proven optimal solutions and were solved with distance between

customers truncated to tenths digit before the problem is solved.

While it is difficult to compare CPU times across different programming

languages and processors, the algorithms producing the best known solutions used

significantly more CPU time than JTS. In some cases, the algorithms were executed

multiple times with different random seeds. For JTS, the average CPU time to find the

best solution is 31.3 seconds and the average total solve time is 48.8 seconds on a

Pentium II400 MHz processor.

48

Table 13 - Comparison to Best Known Solutions for Solomon Instances
Problem Best Known Source JTS Percentage from Best

Distance NV Distance NV Distance NV
rlOl 1607.70 18 Desrochers et al 1992 1679.42 19 4.5% 5.6%
rl02 1434.00 17 Desrochers et al 1992 1485.33 18 3.6% 5.9%
rl03 1207.00 13 Thangiah «fa/1994 1295.77 14 7.4% 7.7%
rl04 1007.31 9 Shaw 1997 1100.88 10 9.3% 11.1%
rl05 1377.10 14 Rochat and Taillard 1995 1449.30 14 5.2% 0.0%
rl06 1252.03 12 Rochat and Taillard 1995 1357.88 12 8.5% 0.0%
rl07 1104.66 10 Shaw 1997 1109.70 11 0.5% 10.0%
rl08 963.99 9 Shaw 1997 994.10 10 3.1% 11.1%
rl09 1205.96 11 Shaw 1997 1274.81 12 5.7% 9.1%
rllO 1135.07 10 Shaw 1997 1171.37 11 3.2% 10.0%
rill 1096.73 10 Shaw 1997 1144.94 11 4.4% 10.0%
rll2 953.63 10 Rochat and Taillard 1995 1022.16 10 7.2% 0.0%

Rl Average 1195.43 11.92 1257.14 12.67 5.16% 6.29%
clOl 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0%
cl02 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0%
cl03 826.30 10 Kohl and Madsen 1997 829.27 10 0.4% 0.0%
cl04 822.90 10 Kohl and Madsen 1997 864.37 10 5.0% 0.0%
cl05 827.30 10 Kohl and Madsen 1997 828.93 10 0.2% 0.0%
cl06 827.30 10 Desrochers«» al 1992 828.93 10 0.2% 0.0%
cl07 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0%
cl08 827.30 10 Desrochers etal 1992 828.93 10 0.2% 0.0%
cl09 827.30 10 Kohl and Madsen 1997 828.93 10 0.2% 0.0%

Cl Average 826.70 10.00 832.91 10.00 0.75% 0.00%
rclOl 1669.00 14 Thangiah er a/1994 1707.31 15 2.3% 7.1%
rcl02 1554.75 12 Taillard etal 1997 1576.64 14 1.4% 16.7%
rcl03 1110.00 11 Thangiahefa/1994 1356.07 12 22.2% 9.1%
rcl04 1135.48 10 Shaw 1997 1216.71 11 7.2% 10.0%
rcl05 1643.38 13 Taillard etal 1997 1569.86 15 -4.5% 15.4%
rcl06 1448.26 11 Taillard et al 1997 1454.40 12 0.4% 9.1%
rcl07 1230.48 11 Shaw 1997 1289.34 12 4.8% 9.1%
rcl08 1139.82 10 Taillard et al 1997 1171.26 11 2.8% 10.0%

RC1 Average 1366.40 11.50 1417.70 12.75 3.75% 10.87%
r201 1254.09 4 Kilby« a/1997 1351.94 4 7.8% 0.0%
r202 1214.28 3 Taillard etal 1997 1127.77 4 -7.1% 33.3%
r203 948.74 3 Rochat and Taillard 1995 962.74 3 1.5% 0.0%
r204 867.33 2 Kilby etal 1997 815.69 3 -6.0% 50.0%
r205 998.72 3 Kilby «a/1997 1098.23 3 10.0% 0.0%
r206 833.00 3 Thangiahe/a/1994 996.07 3 19.6% 0.0%
r207 814.78 3 Rochat and Taillard 1995 894.59 3 9.8% 0.0%
r208 738.60 2 Rochat and Taillard 1995 792.82 2 7.3% 0.0%
r209 855.00 3 Thangiah et al 1994 982.44 3 14.9% 0.0%
r210 963.37 3 Kilby etal 1997 1009.91 3 4.8% 0.0%
r211 923.80 2 Taillard et al 1997 857.06 3 -7.2% 50.0%

R2 Average 946.52 2.82 989.93 3.09 4.59% 9.68%
c201 591.56 3 Potvin and Bengio 1996 591.55 3 0.0% 0.0%
c202 591.56 3 Potvin and Bengio 1996 591.55 3 0.0% 0.0%
c203 591.17 3 Rochat and Taillard 1995 617.61 3 4.5% 0.0%
c204 590.60 3 Potvin and Bengio 1996 590.59 3 0.0% 0.0%
c205 588.88 3 Potvin and Bengio 1996 588.87 3 0.0% 0.0%
c206 588.49 3 Porvin and Bengio 1996 588.49 3 0.0% 0.0%
c207 588.29 3 Rochat and Taillard 1995 588.28 3 0.0% 0.0%
c208 588.32 3 Rochat and Taillard 1995 588.32 3 0.0% 0.0%

C2 Average 589.86 3.00 593.16 3.00 0.56% 0.00%
rc201 1406.94 4 Kilby et al 1997 1513.79 4 7.6% 0.0%
rc202 1162.80 4 Kilby et al 1997 1310.36 4 12.7% 0.0%
rc203 1068.07 3 Kilby etal 1997 1139.71 3 6.7% 0.0%
rc204 803.90 3 Kilby« al 1997 876.59 3 9.0% 0.0%
rc205 1302.42 4 Kilby etal 1997 1463.48 4 12.4% 0.0%
rc206 1156.26 3 Kilby etal 1997 1288.20 3 11.4% 0.0%
rc207 1075.25 3 Kilby etal 1997 1175.33 3 9.3% 0.0%
rc208 833.97 3 Rochat and Taillard 1995 868.76 3 4.2% 0.0%

RC2 Average 1101.20 3.38 1204.53 3.38 9.38% 0.00%
Overall 1004.35 7.10 1049.23 7.49 4.03% 4.47%

49

4.8 Multiple Depot Problems

The Solomon problem instances do not model such factors as multiple depots, a

heterogeneous vehicle fleet, customer priorities, and time walls. These factors are

modeled in our algorithm; however, as demonstrated in the previous section, these factors

do not affect the quality of the solution when they are not present in the problem.

Cordeau et al (1997) develops 10 randomly generated MD VRPs to test their tabu

search heuristic. These problems vary in terms of number and location of customers,

number of depots, number of vehicles, maximum route length, and vehicle capacity. The

objective is to find the shortest tour visiting all of the customers. Table 14 compares the

distances found by the JTS algorithm to those reported by Cordeau et al (1997).

Table 14 - Comparison on Cordeau et al MD VRPs

Number Number JTS
Problem of of Route Vehicle Number of Cordeau et al Best Percent
Number Vehicles Depots Length Capacity Customers Best Distance Distance Difference

prOl 1 4 500 200 48 861.32 909.89 5.64%
pr02 2 4 480 195 96 1307.61 1386.11 6.00%
pr03 3 4 460 190 144 1806.60 1910.31 5.74%
pr04 4 4 440 185 192 2072.52 2198.60 6.08%
pr05 5 4 420 180 240 2385.77 2570.21 7.73%
pr06 6 4 400 175 288 2723.27 3000.13 10.17%
pr07 1 6 500 200 72 1089.56 1132.24 3.92%
pr08 2 6 475 190 144 1666.60 1802.66 8.16%
pr09 3 6 450 180 216 2153.10 2370.79 10.11%
prlO 4 6 425 170 288 2921.85 3159.48 8.13%

Average 1898.82 2044.04 7.65%

As seen in Table 14, JTS does an admirable job on these MD VRPs coming

within 10% or better of the best known solution across all ten problem instances.

In addition, Cordeau et al (1997) compile benchmark problems from the literature

and achieve new best known solutions to all but two of them. Table 15 compares the

50

distances found by JTS to the best known solutions. Problems 1 through 7 are found in

Christofides and Eilon (1969). Problems 8 through 11 are found in Gillett and Johnson

(1976). Problems 12 through 23 are found in Chao et al (1993).

Table 15 - Comparison on MD VRPs from Literature

Number Number JTS
Problem of of Route Vehicle Number of Best Known Best Percent
Number Vehicles Depots Length Capacity Customers Distance Distance Difference

pOl 4 4 infinite 80 50 576.87 601.70 4.30%
p02 2 4 infinite 160 50 473.53 495.00 4.53%
P03 3 5 infinite 140 75 641.19 685.99 6.99%
p04 8 2 infinite 100 100 1001.59 1074.83 7.31%
p05 5 2 infinite 200 100 750.03 811.52 8.20%
p06 6 3 infinite 100 100 876.50 927.01 5.76%
p07 4 4 infinite 100 100 885.80 994.40 12.26%
P08 14 2 310 500 249 4437.68 4723.49 6.44%
p09 12 3 310 500 249 3900.22 4287.41 9.93%
plO 8 4 310 500 249 3663.02 4242.42 15.82%
pll 6 5 310 500 249 3554.18 4129.99 16.20%
pl2 5 2 infinite 60 80 1318.95 1453.82 10.23%
pl3 5 2 200 60 80 1318.95 1357.48 2.92%
pl4 5 2 180 60 80 1360.12 1365.68 0.41%
pl5 5 4 infinite 60 160 2505.42 2741.75 9.43%
pl6 5 4 200 60 160 2572.23 2658.05 3.34%
pl7 5 4 180 60 160 2709.09 2731.36 0.82%
pl8 5 6 infinite 60 240 3702.85 4371.05 18.05%
pl9 5 6 200 60 240 3827.06 3951.66 3.26%
p20 5 6 180 60 240 4058.07 4097.04 0.96%
p21 5 9 infinite 60 360 5474.84 6486.66 18.48%
P22 5 9 200 60 360 5702.16 6014.87 5.48%
P23 5 9 180 60 360 6095.46 6145.56 0.82%

Average 2669.82 2884.73 8.05%

JTS achieves solutions within 10% of the best known in a short amount of time.

For JTS, the average CPU time to find the best solution is 74.4 seconds and the average

total solve time is 170.3 seconds on a Pentium JJ 400 MHz processor.

For problems 12 through 23, there is a clear pattern for the performance of JTS.

As the vehicle capacity gets smaller, the quality of the JTS solution improves. Since JTS

maintains feasibility throughout the algorithm, we hypothesize that the performance of

51

JTS is improved on problems with a smaller feasible solution space, i.e. tightly

constrained problems.

4.9 Conclusions

Our JTS algorithm provides quick, feasible, high-quality solutions. The algorithm

handles many additional factors, such as, multiple depots, multiple heterogeneous

vehicles, time windows, time walls, and priorities. These factors combined with the

multiple parameter sets for solution generation make JTS a robust algorithm capable of

solving many variations of the vehicle routing problem.

JTS does not seriously challenge the best known solutions for the Solomon or

MDVRP benchmark problems. However, the results achieved by JTS are within 10% of

the best known solutions and the solution time is significantly shorter. We recognize that

we have not modeled the UAV problem with 100% accuracy. However, in practical

UAV applications, solution speed is the most important attribute of the solution

algorithm. Therefore, it is not cost-effective to spend excess time searching for a 99%

solution to the model when it is quite likely that the 90% solution will suffice.

A 99% solution is probably not achievable by the JTS algorithm. Even when all

jump points are explored, the solutions are only improved by approximately 2%. The

algorithm finds the good quality 90% solutions quickly, but likely converges too quickly

to achieve the remaining 10%. Additional diversification strategies are likely needed to

achieve the additional solution quality improvement.

52

Chapter 5. Recommendations for Further Research

5.1 Modeling UAV Realism

Weather conditions have a significant impact upon UAV missions. This is the

main area in which the algorithm needs to be improved. The JTS algorithm incorporates

penalty factors for each segment. Weather data can be brought into the algorithm,

processed and represented using these penalties. The algorithm would then consider

weather factors in building solutions.

Terrain can also impact UAV missions. Terrain features can be incorporated into

the algorithm in the same manner as weather. The speed of the algorithm must be kept in

mind when adding these factors.

5.2 Tour Construction

The best direction for improving the tour construction portion of the algorithm

would be to produce a more diverse set of jump points. Even when all of the jump points

are explored, the algorithm does not challenge the best known solutions for the Solomon

or MDVRP benchmark problems.

This improvement is likely to come from new construction heuristics or new

parameter values. Of the two, new construction heuristics seem more promising. The

genetic sectoring algorithm developed by Thangiah et al (1994) in combination with the

Solomon heuristic could prove very effective.

53

5.3 Search Techniques

Another direction in which the algorithm may be improved is with more advanced

local search techniques. There are many advanced tabu and local search techniques

proposed by Shaw (1997) and Taillard et al (1997) that may improve the solution quality.

When making these improvements, the needs of the eventual user of the algorithm

must be considered. Do they require a 90% solution in a very short amount of time or

can they wait longer for a potentially better solution?

5.4 Extensions to VRP

Our algorithm models many VRP factors such as heterogeneous vehicles.

However, we do not 'take advantage' of heterogeneous vehicles mainly because it is

unclear how to best utilize a heterogeneous vehicle fleet. Is it more efficient to use larger

vehicles before smaller ones, faster ones before slower ones? Much research remains in

this area.

54

Bibliography

Battiti, Roberto. "Reactive Search: Toward Self-Tuning Heuristics" in Modern Heuristic
Search Methods. Ed. V.J.Rayward-Smith, and others. Wiley & Sons, Inc.,
(1996).

Brandao, Jose and Alan Mercer. "A Tabu Search Algorithm for the Multi-Trip Vehicle
Routing and Scheduling Problem," European Journal of Operational Research,
100: 180-191 (1997).

Carlton, William B. A Tabu search to the General Vehicle Routing Problem. Ph.D.
dissertation. University of Texas, Austin TX, (1995).

Chao, I.M., B.L. Golden, and E.A. Wasil. "A New Heuristic for the Multi-Depot Vehicle
Routing Problem that Improves Upon Best Known Solutions," American Journal
of Mathematical and Management Sciences, 13:371-406 (1993).

Christofides, N. and S. Eilon. "An Algorithm for the Vehicle-Dispatching Problem,"
Operations Research Quarterly, 20:309-318 (1969).

Clarke, G. and J.W. Wright. "Scheduling Vehicles from a Central Depot to a Number of
Delivery Points," Operations Research, 12: 568-581 (1964).

Cordeau, J.F., M. Gendreau, and G. Laporte. "A Tabu Search Heuristic for Periodic and
Multi-Depot Vehicle Routing Problems," Networks, 30(2): 105 (1997).

Desrochers M., J. Desrosiers, and M.M. Solomon. "A New Optimization Algorithm for
the Vehicle Routing Problem with Time Windows," Operations Research, 40:
342-354 (1992).

Gendreau, Michel, Alian Hertz and Gilbert Laporte. "A Tabu Search Heuristic for the
Vehicle Routing Problem," Management Science, 40(10): 1276-1290 (1994).

Gendreau, Michel, Gilbert Laporte and Frederic Semet. "A Tabu Search Heuristic for the
Undirected Selective Travelling Salesman Problem," European Journal of
Operational Research, 106: 539-545 (1998).

Gillett, B.E. and J.G Johnson. "Multi-Terminal Vehicle-Dispatch Algorithm," Omega,
4:711-718(1976).

Gillett, B.E. and L. Miller. "A Heuristic Algorithm for the Vehicle Dispatching
Problem," Operations Research, 22: 340-349 (1974).

Glover, Fred "Tabu Search - Part I," ORSA Journal on Computing, 1: 190-206 (1989).

55

Glover, Fred "Tabu Search - Part II," ORSA Journal on Computing, 2: 4-32 (1990a).

Glover, Fred. "Tabu Search: A Tutorial," Interfaces, 20: 74-94 (July-August 1990b).

Glover, Fred and M. Laguna. Tabu Search. Boston: Kluwer Academic Publishers,
(1997).

Harder, Robert. A Java Universal Vehicle Router in Support of Routing Unmanned
Aerial Vehicles. MS thesis, AFIT/GOA/ENS/OOM. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, (February 2000).

Hooker, J.N. "Testing Heuristics: We Have It All Wrong," Journal of Heuristics, 1:
33-42 (1995).

Kilby P., P. Prosser, and P. Shaw. "Guided Local Search for the Vehicle Routing
Proble;
(1997)
Problem," In Proceedings of the 2" International Conference on Meta-heuristics,

Kohl, N. and O. B. G. Madsen. "An Optimization Algorithm for the Vehicle Routing
Problem with Time Windows Based on Lagrangian Relaxation," Operations
Research, 45(3): 395 (1997).

Laporte, Gilbert. "The Traveling Salesman Problem: An overview of exact and
approximate algorithms," European Journal of Operational Research, 59: 231-
247 (1992a).

Laporte, Gilbert. "The Vehicle Routing Problem: An overview of exact and approximate
algorithms," European Journal of Operational Research, 59: 345-358 (1992b).

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The Traveling
Salesman Problem. A Guided Tour of Combinatorial Optimization. John Wiley
& Sons Ltd, (1985).

O'Rourke, Kevin P. Dynamic Unmanned Aerial Vehicle (UAV) Routing With a Java-
Encoded Reactive Tabu Search Metaheuristic. MS thesis, AFIT/GOA/ENS/99M.
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, (February 1999).

Parker, Gary R. and Ronald L. Rardin. "An Overview of Complexity Theory in Discrete
Optimizations: Part I. Concepts," HE Transactions, March: 3-10 (1982a).

Parker, Gary R. and Ronald L. Rardin. "An Overview of Complexity Theory in Discrete
Optimizations: Part U. Results and Implications," HE Transactions, June: 3-10
(1982b).

56

Potvin, J.-Y. and S. Bengio. "The Vehicle Routing Problem with Time Windows—Part
II: Genetic Search," ORSA Journal on Computing, 8(2): 165 (1996).

Rochat, Y. and F. Semet. "A Tabu Search Approach for Delivering Pet Food and Flour
in Switzerland," Journal of Operations Research Society, 45; 1223-1246 (1994).

Rochat, Y. and E. Taillard. "Probabilistic Diversification and Intensification in Local
Search for Vehicle Routing," Journal of Heuristics, 1(1): 147-167 (1995).

Rosenkrantz, DJ., R.E. Stearns, and P.M. Lewis II. "An Analysis of Several Heuristics
for the Traveling Salesperson Problem," SI AM Journal on Computing, 6: 563-581
(1977).

Ryan, Joel L., T.G. Bailey, J.T. Moore, and W.B. Carlton. "Unmanned Aerial Vehicles
(UAV) Route Selection Using Reactive Tabu Search," Military Operations
Research, 4(3): 5-24 (1999).

Ryer, David M. Implementation of the Metaheuristic Tabu Search in Route Selection for
Mobility Analysis Support System. MS thesis, AFIT/GOA/ENS/99M-07. School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, (March 1999).

Semet, Frederic and Eric Taillard. "Solving Real-Life Vehicle Routing Problems
Efficiently Using Tabu Search," Annals of Operations Research, 41: 469-488
(1993).

Shaw, P. A New Local Search Algorithm Providing High Quality Solutions to Vehicle
Routing Problems. APES Group, Dept of Computer Science, University of
Strathclyde, Glasgow, Scotland, UK. (June 1997).

Sisson, Mark R. Applying Tabu Heuristic to Wind Influenced, Minimum Risk, and
Maximum Expected Coverage Routes. MS thesis, AFIT/GOR/ENS/97M. School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, (February 1997).

Solomon, Marius M. "Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints," Operations Research, 35(2): 254-265 (1987).

Taillard, E., P. Badeau, M. Gendreau, F. Guertain, and J.-Y. Potvin. "A Tabu Search
Heuristic for the Vehicle Routing Problem with Soft Time Windows,"
Transportation Science, 32(2) (1997).

Thangiah, S.R., I.H. Osman, and T. Sun. Hybrid Genetic Algorithm, Simulated
Annealing and Tabu Search Methods for Vehicle Routing Problems with Time

57

Windows. Technical Report UKC/OR94/4, Institute of Mathematics and
Statistics, University of Kent, Canterbury, UK. (1994).

Tsubakitani, Shigeru. and James R. Evans. "An empirical study of a new metaheuristic
for the traveling salesman problem," European Journal of Operational Research,
104:113-128(1998).

"USAF Unmanned Aerial Vehicle Battlelab homepage." Excerpt from unpublished
article, n. pag. http://www.wg53.eglin.af.mil/battlelab/default.htm. (25 March
1999).

58

	A Hybrid Jump Search and Tabu Search Metaheuristic for the Unmanned Aerial Vehicle (UAV) Routing Problem
	Recommended Citation

	/tardir/tiffs/a378103.tiff

