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Abstract 

In this research, we provide a new meta-heuristic, a jump search / tabu search 

hybrid, for addressing the vehicle routing problem with real-life constraints. A tour 

construction heuristic creates candidate solutions or jump points for the problem. A tabu 

search algorithm uses these jump points as starting points for a guided local search.  We 

provide statistical analysis on the performance of our algorithm and compare it to other 

published algorithms. Our algorithm provides solutions within 10% of the best known 

solutions to benchmark problems and does so in a fraction of the time required by 

competing algorithms. The timeliness of the solution is vitally import to the unmanned 

aerial vehicle (UAV) routing problem. UAVs provide the lion's share of reconnaissance 

support for the US military. This reconnaissance mission requires the UAVs to visit 

hundreds of target areas in a rapidly changing combat environment. Air vehicle operators 

(AVOs) must prepare a viable mission plan for the UAVs while contending with such 

real-life constraints as time windows, target priorities, multiple depots, heterogeneous 

vehicle fleet, and pop-up threats. Our algorithm provides the AVOs with the tools to 

perform their mission quickly and efficiently. 

Keywords: Air Force Research, Operations Research, Combinatorial Analysis, 

Algorithms, Remotely Piloted Vehicles, Surveillance Drones, Multiple Depots, Time 

Windows, Jump Search, Tabu Search, Vehicle Routing Problem, Java, Heuristics, 

Traveling Salesman Problem. 
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A HYBRID JUMP SEARCH AND TABU SEARCH 

METAHEURISTIC FOR THE UNMANNED AERIAL 

VEHICLE (UAV) ROUTING PROBLEM 

Chapter 1. Background and Statement of the Problem 

1.1 Background 

Unmanned aerial vehicles (UAVs) play an increasingly important role in military 

operations. In recognition of this fact, the Air Force established the UAV Battlelab at 

Eglin AFB, FL in 1997. The UAV Battlelab's mission is to "rapidly identify and 

demonstrate the military worth of innovative concepts that exploit the unique 

characteristics of UAVs to advance Air Force combat capability" (USAF Unmanned 

Aerial Vehicle Battlelab homepage, 1999). 

The bulk of the UAV mission is reconnaissance. A reconnaissance mission 

involves the UAV flying over a number of target areas within established time windows 

and/or outside of restricted time windows, collecting images for a minimum (though 

potentially longer) amount of time, and returning to base. The air vehicle operators 

(AVOs) are responsible for creating a viable flight plan for each reconnaissance mission, 

for each UAV under their control. 
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1.2 Problem Statement 

The AVOs must determine the routing for multiple UAVs to cover designated 

target areas while conforming to established time window restrictions and remaining 

within UAV endurance limits. The routings must account for the wind and weather 

conditions at various altitudes, no-fly zones, high threat areas, and target priorities if 

complete target coverage is impossible. Currently, AVOs determine these routing 

manually. 

In a rapidly changing combat environment, new targets often arise. It is common 

for UAV missions to receive a new target tasking during a mission, a dynamic re-tasking. 

It is also common for there to be several re-taskings during the course of a UAV mission. 

AVOs currently re-route the UAV manually to accommodate the re-tasking and try to 

complete as much of the original plan as possible. AVOs need a way to quickly add new 

targets to the route while minimizing the coverage impact on any targets not already 

visited. 

Mathematically, the problem is to minimize the 'cost' of coverage, {e.g. flight 

time, man-hours, etc.) if target coverage is feasible or, alternatively to maximize coverage 

with the available resources. We know the targets and their time window restrictions and 

priorities, the number of vehicles available, current weather data, and threat areas. We 

solve the problem by assigning tours to the available vehicles. Each tour consists of an 

ordered list of targets. We are constrained by the time windows for the target areas, the 

threat areas we must circumnavigate, and the endurance of the vehicles. Formally, this 

problem is a multiple travelling salesman problem (TSP) with side constraints. 



1.3 Scope and Contribution 

This research continues the efforts of O'Rourke (1999) in support of the UAV 

Battlelab. O'Rourke's algorithm provides the AVOs with near-optimal tours accounting 

for time windows, threat areas, multiple vehicles, and asymmetric route lengths due to 

wind. Our algorithm extends O'Rourke's effort in four areas. The first area adds a 

priority scheme to the target areas to accommodate resource-constrained environments. 

The second area adds the ability to handle heterogeneous vehicle types from multiple 

starting locations, or depots. The third area adds the ability to route vehicles so as to 

avoid restricted time windows or time walls. The final area provides a quicker solution 

using a jump search / tabu search (JTS) hybrid algorithm. 

We do not perform any target preprocessing. Operationally, the AVO receives a 

target list and often the UAV can capture more than one target in a single snapshot. 

Mathematically, this represents a coverage problem; however, for our purposes we 

assume coverage is accounted for in the target area list provided to our algorithm. 

We also do not account for vehicle turning radius or approach angles. Although 

this can be an important aspect of vehicle routing, such capabilities vary based on vehicle 

type. Since our algorithm handles multiple vehicle types, we assume AVOs handle the 

flight profile execution detail. 

Finally, we do not account for changes in terrain. Although terrain may affect 

route feasibility, certain assumptions must be made in order to return an answer in a 

reasonable amount of time. We will consider terrain as flight profile execution and again 

leave that to the AVOs. 



Our contribution lies in assisting the AVOs in two important ways. First, the 

jump search portion of our algorithm provides the AVOs with a very quick, feasible, 

high-quality solution. This is an important capability for dynamically routing an airborne 

UAV. Time permitting, the AVOs can further refine a quickly obtained solution by 

engaging the tabu search portion of the algorithm. Second, we provide enhancements to 

known heuristic approaches to address customer prioritization, time walls, multiple 

depots, and non-homogeneous vehicles. 

In terms of operations research, this effort provides a new meta-heuristic 

approach, a JTS hybrid algorithm, for solving complex vehicle routing problems. This 

algorithm is based on the hypothesis that the speed of tabu search is improved with a 

quality starting solution and that multiple starting solutions are an effective 

diversification technique for the search. We prove both of these hypotheses through 

empirical testing. 

1.4 Report Overview 

Chapter 2 presents a brief review of the literature pertaining to this research, while 

Chapter 3 presents a proposed methodology for conducting the research. Chapter 4 

presents our test of the algorithm and analysis of the test results. Chapter 5 provides 

avenues for further research. 



Chapter 2. Literature Review 

2.1 Vehicle Routing and Traveling Salesman Problems 

The vehicle routing problem (VRP) and the traveling salesperson (agent) problem 

(TSP) are two classic problems of operations research. The literature contains many 

examples of different varieties of these problems, some of which we describe below. 

Lawler et al (1985) provides comprehensive coverage of the TSP and its variants. 

The two problems are closely related. In the TSP, a 'salesman' must visit a list of 

cities and return home, visiting each city only once. The objective is to find the 

minimum tour length. A tour or route consists of an ordered list of cities visited. By its 

classical definition, a sub-tour is an ordered cycle of one or more cities that does not 

include all of the cities. The presence of sub-tours in the solution of a TSP makes the 

solution infeasible. 

For our purposes, we may not have the resources to visit all the cities. Therefore, 

we define a sub-tour as an ordered cycle of two of more cities that does not include the 

starting city or depot. The VRP is an extension of the TSP, in which the vehicle either 

delivers or picks up items from the cities subject to volume and weight capacity 

constraints. 

Carlton (1995) creates a hierarchical classification scheme for the General VRP 

(GVRP). His classification establishes tiers for the basic TSP, VRP, and pickup and 

delivery problems (PDP). In a VRP, the vehicles perform either delivery or pickup 

operations exclusively. A PDP extends the VRP to where vehicles can make one or more 

pickups from customers along the route for delivery to other customers along the route. 
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Each tier allows for any combination of special cases of each of the problems. 

The problem can have a single vehicle (SV), multiple homogeneous vehicles (MVH), or 

multiple non-homogeneous vehicles (MVH). The vehicles can depart from a single depot 

(SD), or multiple depots (MD), and the tour can be constrained by time windows (TW) 

and route length (RL) (Carlton 1995). Using Carlton's classifications, our problem is a 

MD MVH TSP with TW and RL. The route length constraint represents the endurance of 

the vehicle. In addition, we must contend with added constraints accommodating 

customer priorities and restricted time windows. 

We base our mathematical formulation of the problem on Carlton's formulation 

for the MD MVH PDP with TW and RL and Ryan's formulation for the MVH SD TSP 

with TW and RL (Carlton 1995, Ryan et al 1999). We have k=l...Vvehicles located at 

r=l...D depots which must service N customers indexed by / and/ 

Each customer has a service time .s,-, a time window defined by earliest arrival e, 

and latest departure /,, and a restricted time window defined by earliest restricted time er, 

and latest restricted time /r,. Vehicles arriving early may wait with waiting time W, at 

customer /, equal to the earliest arrival time e, minus the actual arrival time. Vehicles 

arriving during the restricted time must also wait with waiting time Wt at customer /, 

equal to the latest restricted time /r, minus the actual arrival time. Vehicles arriving 

before the earliest restricted time er, must be able to complete service before the earliest 

restricted time er, or must also wait with waiting time Wt at customer i, equal to the latest 

restricted time /r, minus the actual arrival time. If a customer is not visited, it has an 

associated penalty/?, based on its priority. 



Each segment between customers / andy has an associated cost c,y*r, time required 

to travel the segment %r, and segment penalty spijkr for time spent in high threat areas and 

no fly zones; all of these values differ based on vehicle type. Each vehicle begins and 

ends its tour at its depot, customer index 0, and has an endurance (maximum route 

length) ukr. 

We assign a value of 1 to X^r if vehicle k from depot r travels from customer i to 

customer,/*. We assign the starting service time for customer i to T,. We assign a value of 

1 to tii if customer i is not visited. The objective is to minimize 

reD keV ietf jeN ieN ieN 

Subject to tour constraints, 

XXX^=1 VJ*N (2a) 
reDkeV ieN 

[one vehicle enters each customer] 

IV-I^=0  VjzN,keV,reD (2b) 
ieN ieN 

[same vehicle that enters each customer leaves it] 

time window constraints, 

Xijkr=l=>Tj=Ti+si+tijkr+Wj   Vi,jeN,VkeVyreD (3a) 

[time precedence] 

e, <7) and 7) + s, <lt Vi&N (3b) 
[time windows] 

lrt <7) or Tt + s: <ert VieN (3c) 
[restricted time windows] 

route length constraints, 

XXta+w0+'J-*«**"*   VfceV.reD (4) 
ieN jeN 
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visitation constraints, 

».=1-ZS5Xr 
yieN (5) 

reDkeV j<=N 

and binary constraints. 

X,^e{04} Vi,jeN,VkeVyreD (6a) 

«,. e {0,1} VieJV (6b) 

Finally, we need sub-tour breaking constraints. Let iV*r represent the subset of 

available customers visited by vehicle k from depot r. For each vehicle, we add the 

following constraints 

X X XUkr - 1   V nonempty subset Qc,Nkr. (7) 
ieß je Q 

In Chapter 3, we show our solution structure implicitly enforces these constraints as well 

as the standard tour (2) and binary constraints (6). The time window constraints (3) 

ensure vehicles service the customers within required time windows. The route length 

constraints (4) ensure the tour is within vehicle endurance limits. 

In addition, we accommodate customer priorities, asymmetric route lengths, threat 

areas and no-fly zones. We encapsulate these restrictions in our objective function (1), 

where the asymmetric route lengths are reflected in the segment cost Cy*r- We penalize 

segments that enter threat areas and no-fly zones based on the time spent in these areas 

and add the penalty spijkr to solutions containing the offending segment. Lastly, we add 

the priority penalty/?, for each unvisited customer. 



2.2 Heuristic Approaches 

In terms of computational complexity, the TSP belongs to the class NP-hard 

(Lawler et al 1985). A polynomial-time algorithm does not exist for members of this 

class, and it is unlikely one will ever be discovered (Parker and Rardin 1982a, 1982b). 

The number of possible solutions to the TSP grows at a factorial rate as the number of 

customers increases, which makes enumeration algorithms unappealing. Consequently, 

heuristic approaches dominate the solution techniques for the TSP and VRP (Brandao 

and Mercer 1997, Carlton 1995, Clarke and Wright 1964, Gendreau et al 1994, Gendreau 

et al 1998, O'Rourke 1999, Rochat and Semet 1994, Ryan et al 1999, Semet and Taillard 

1993, Solomon 1987, Tsubakitani and Evans 1998). Heuristic approaches provide no 

guarantee of optimality, although most provide at least a feasible solution in a relatively 

short amount of time. Timeliness of a solution is very important for our implementation, 

as UAV operations are typically time-sensitive. 

2.2.1 Tour Construction and Tour Improvement Algorithms 

Laporte (1992a, 1992b) surveys current optimal and heuristic techniques for both 

the TSP and VRP and notes that heuristic techniques fall into two categories: tour 

construction algorithms and tour improvement algorithms. Tour construction algorithms 

start with all customers unassigned and attempt to build a near-optimal solution. 

Conversely, tour improvement algorithms start with the customers assigned and attempt 

to improve the solution by changing the order in which the vehicles visit the customers or 

changing which vehicles visit which customers. 



Some common tour construction algorithms include nearest neighbor 

(Rosenkrantz et al 1977), the Clarke and Wright savings (Clarke and Wright 1964), 

sweep (Gillett and Miller 1974), and their insertion versions. At each iteration, nearest 

neighbor adds the nearest customer to the end of a current tour until all customers are 

visited. The vehicle then returns to the starting point after the last customer is added. 

While very quick, this approach's solutions are generally poor. The Clarke and Wright 

savings heuristic starts with all customers visited via independent tours. It then chooses 

the next customer to add to the current tour based on the net savings of visiting the 

customer pair on a single tour versus two separate tours. The sweep heuristic attempts to 

cluster the customers first by 'sweeping' in a circle from the depot. The insertion 

versions are more complex and allow for customers to be inserted anywhere in the tour. 

Insertion algorithms generally produce higher quality solutions (Laporte 1992a, 1992b). 

Solomon (1987) modifies some of the common tour construction heuristics to 

handle the VRP with the addition of time windows (TW). He modifies the nearest 

neighbor, savings, and sweep heuristics, and provides an insertion-based heuristic with 

three different insertion criteria. He also provides the MVH VRP TW test cases. These 

test cases form the literature's standard for measuring MVH VRP TW algorithm 

performance. His most robust insertion algorithm achieves the best results for 27 of the 

56 problems tested and a lower bound within 8.3% of best known solutions for the 

remaining 29 problems (Solomon 1987). (All further references to Solomon's insertion 

heuristic are based exclusively on the most robust version.) 
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2.2.2 Solomon's Insertion Heuristic 

Solomon suggests two methods for initializing tours in his insertion heuristic. 

The first routes to the farthest customer, and the second routes to the customer with the 

earliest deadline. Once the tour is initialized, remaining customers are inserted until 

either the vehicle is at maximum capacity or no other customers can be added without 

violating time window feasibility or vehicle endurance. At this point, another tour is 

initialized and the process continues. 

The algorithm inserts customer u between customers / andy based on two criteria: 

Cl(i,u,j) and C2(i,u,j). Cl(i,u,j) determines the best insertion point for each unassigned 

customer u as 

Cl(i(u),u,j(u)) = min(cl(ip,u,jp+l))   p = \,...,m (8a) 

and 

c\(ip, u, jp+x) = a\(diu + duj -ßdy)+ al(bju -bj) (8b) 

where dy is the distance between customers i and j, bjU is the beginning service time of 

customer j with customer u inserted before it, bj is the beginning service time of customer 

j without customer u inserted and/? is the position, from 1 to m, within the current tour. 

Parameters al and a2 must be positive and sum to one, while parameter fi must be 

positive. 

Equation (8a) attempts to minimize the cost of inserting customer u into an 

emerging tour in terms of distance added (diu + duj - ßdi}) and delay in service to the 

following customer (bju - bj). Parameter fi determines how much of the original distance 

between customers i andy" is subtracted from the distance between customer i to customer 

11 



u to customer), while parameters al and cx2 balance the relative importance of distance 

and time window feasibility. All three parameters are user set. 

Next, the algorithm chooses which customer to insert based on criteria C2(i,u,j) as 

C2(i(u),u, j(u*)) = max{A,-d0U -Cl(/(u),w, j(u)))  Vunroutedcustomer u.     (9) 

Equation (9) inserts the unassigned customer u with the largest 'savings' compared to the 

distance between the customer and the depot 0. Parameter A is the multiplier for the 

distance. The insertion continues until the algorithm has routed all customers (Solomon 

1987). 

Time window feasibility is maintained throughout the algorithm. Solomon's 

Lemma 1.1 states that if a customer is inserted into a tour that is time window feasible, it 

remains time window feasible if the insertion does not result in a delay to the following 

customer (1987). Therefore, when we insert a new customer, we need only check from 

the insertion point until we (1) find a customer whose service time is not delayed, (2) we 

find a time window violation, or (3) we reach the end of the tour. 

Since a VRP is very similar to the TSP, we can easily modify many of the 

algorithms developed for one problem to find solutions for the other. For example, an 

algorithm developed for the VRP can be used for the TSP by relaxing the vehicle 

capacity constraints. 

We use a tour construction algorithm based on Solomon's insertion heuristic in 

our JTS algorithm. Solomon develops his algorithm for the VRP with time windows. 

We use the same algorithm, but remove vehicle capacity constraints. 

12 



2.2.3 k-opt Improvement Algorithms 

The Jk-opt algorithms are common tour improvement procedures. In the k-opt 

algorithm, k routes are dropped and replaced at each iteration until no further improving 

moves exist. For example, a move that swaps two adjacent customers, thus exchanging 

two routes, is a two-opt move (assuming the routes are symmetric). 

2.2.4 Tabu Search 

The more robust algorithms contain both tour construction and &-opt improvement 

moves. Of the heuristic approaches, Laporte (1992b) states that the tabu search heuristic 

may be one of the best for TSP and VRP. Indeed, tabu search's proven record in solving 

these types of problems (Brandao and Mercer 1997, Carlton 1995, Gendreau et al 1994, 

Gendreau et al 1998, O'Rourke 1999, Rochat and Semet 1994, Ryan et al 1999, Semet 

and Taillard 1993) motivates its use in this effort. 

Tabu search (TS) is a meta-heuristic developed by Glover (1989, 1990a). TS 

provides a methodology to escape local optima by use of recency-based memory. The 

search moves from solution to solution while maintaining a list of recent moves. The 

moves in this list are tabu or off-limits. This stops the algorithm from cycling back to 

local optima after taking a non-improving move (Glover and Laguna 1997). The 

literature provides many variations and extensions of TS implementation (see Glover and 

Laguna 1997). 

Many tabu search implementations use a heuristic to build a starting solution 

(Brandao and Mercer, 1997; Carlton, 1995; Gendreau et al 1994, Gendreau et al 1998; 

Rochat and Semet, 1994). This approach generally improves the quality of the solution 
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and the speed of the algorithm. Carlton (1995) and Rochat and Semet (1994) implement 

Solomon's insertion heuristic for this purpose, with both noting the degree to which the 

starting solution improved the overall solution depends upon the parameters used and the 

configuration of the customers. 

Carlton (1995) develops algorithms to solve the VRPTW using a reactive tabu 

search (RTS) meta-heuristic. Reactive tabu search (RTS) (Battiti 1996) allows the length 

of the tabu list to change based on the quality of the search. When the search appears to 

be cycling through the same solutions, the algorithm increases the tabu length to force 

search diversification and break the cycle. 

Two important facets of any good TS algorithm are intensification and 

diversification (Glover and Laguna 1997). Intensification is the process of conducting a 

more thorough search in the areas of the solution space where the algorithm has found 

good solutions. By contrast, diversification drives the search into new, previously 

unexplored, areas of the solution space. 

One popular intensification technique is a candidate or elite list. The TS starts by 

diversifying and quickly scanning the solution space. The top candidate solutions found 

are saved in an elite list. After the diversification period, the search moves to each 

candidate in the elite list and intensifies the search in the neighborhoods of those elite 

solutions. Our approach is similar to the elite list, except we begin the TS with an elite 

list already in place. We obtain this elite list using tour construction heuristics. 
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2.2.5 Jump Search 

Tsubakitani and Evans (1998) developed the jump search (JS) meta-heuristic as a 

way to generate good candidate solutions using a quick tour-construction heuristic and 

then use these candidate solutions as 'jump points' for a local search. The idea springs 

from the notion that there exists plateaus of good solutions within the solution space, and 

these jump points provide quick access to those plateaus. In their study, Tsubakitani and 

Evans use JS to guide two-opt and three-opt improvement algorithms to solve a 1-TSP 

without side constraints. 

Their JS uses six different tour construction heuristics to generate a list of 

candidate jump points. The algorithm orders the candidate jump points based on 

objective function value. If two heuristic solutions differ by a single move, the algorithm 

keeps the solution with the best objective function value. The algorithm then launches a 

local search from the best available jump point. When JS finds a local optimum, the 

search moves to the next jump point on the candidate list. This process continues until all 

jump points are exhausted or the algorithm reaches a predetermined time limit or number 

of iterations. 

JS produces equal or better solutions than TS for nearly all of the test cases 

Tsubakitani and Evans examine.   However, they compare their JS algorithm to a very 

basic TS algorithm, one without intensification or diversification, and on a very basic 

problem, 1-TSP (Tsubakitani and Evans 1998). We hypothesize that in complex 

problems, these good plateaus may contain many local optima; consequently, it may be 

unwise to give up the search when we find the first local optimum. 
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TS provides a mechanism to escape the local optima and continue the search. We 

can search the plateau more thoroughly and therefore intensify the search in promising 

areas. When the rate of improvement in the solution quality begins to level off, the 

procedure moves to the next jump point and diversifies to an unexplored area of the 

solution space. Tsubakitani and Evans suggest that a JS / TS hybrid (JTS) could be a 

very effective search algorithm. We explore this suggestion and apply it to the UAV 

routing problem. 

2.3 Earlier UAV Routing Efforts 

Our UAV research effort is one of many performed in recent years. Sisson (1997) 

constructs a RTS algorithm based on Carlton's (1995) RTS approach to solve the UAV 

routing problem while accounting for wind effects and attrition due to enemy actions. 

Sisson's approach determines the minimum number of vehicles required to cover a 

specified target area given a risk assessment based on enemy threat and provides insight 

into the minimum tour and minimum risk involved in providing the necessary coverage. 

The routes are passed into a Monte Carlo simulation to assess vehicle losses and expected 

coverage of targets (Sisson 1997). 

Ryan et al (1999) centers on finding the 'robust tour', using the minimum number 

of vehicles. He defines the 'robust tour' as the route least affected by changes in threat, 

target area service times, and weather conditions. Using an embedded optimization 

approach, his Monte Carlo simulation generates random weather conditions and 

probabilities of survival for each target. He then passes these values into a reactive tabu 
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search (RTS) algorithm to search for the best solution under each set of variations, with 

the robust solution defined as the solution appearing most often. 

While Ryan's results are useful and appropriate for autonomous UAVs in which 

missions are preplanned, they do not address the concerns of the more dynamic missions 

of UAVs such as the US Air Force's RQ-1A Predator (O'Rourke 1999). USAF pilots in 

a ground control station control the Predator vehicle remotely. Consequently, they are 

able to change the Predator routes as the mission dictates. O'Rourke recognizes the need 

for a program capable of returning the best available tour based on current conditions and 

return this solution in a short enough time for it to be of use. 

O'Rourke's efforts focus on a dynamic routing algorithm. Building upon the RTS 

algorithm from Ryan et al (1999) and Carlton (1995), he develops a Java-based 

application to solve this problem. O'Rourke adds functionality to the algorithm to 

account for, and take advantage of, multiple wind tiers. Additionally, his program 

incorporates time windows, no-fly zones, and threat areas as in previous efforts. He adds 

the ability to perform dynamic routing, so vehicles may start from their current location 

and return to the depot, and he improves the performance of the algorithm using a 

reactive penalty scheme. 

2.4 Analysis of Heuristics 

As Hooker (1995) observes, too much of heuristic research is reduced to 

competitive testing. Researchers are forced to show that their new algorithms are faster 

or produce higher quality solutions than existing algorithms to be published. What is 

typically missing is any kind of explanation as to why the algorithms perform as they do 
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and any statistical support that the superior performance of the algorithm extends beyond 

the test problems. 

We develop and test five local search algorithms using empirical experimentation 

to gain insight into which approach is superior and why. Due to differences in 

programming techniques, testing competing algorithms head-to-head is problematic. We 

overcame this problem by modifying a common algorithm to isolate the differences due 

to the particular modifications made to that algorithm. 

2.5 Conclusion 

Although a tremendous amount of research exists on the TSP and its variants, few 

have endeavored to incorporate multiple non-homogeneous vehicles and multiple depots 

into the solution algorithms. These side constraints are very important to real-life 

problems in the military and civilian sector. While prioritizing customers for inclusion 

into tours is not tremendously difficult, it seems to have been neglected entirely, 

suggesting that customer prioritization is prominent mainly in military applications. 

TS is a popular heuristic for solving TSPs and it provides good results. Many TS 

algorithms are primed with an initial solution provided by a tour construction heuristic 

that improves the performance of the algorithm. Carlton (1995) and O'Rourke (1999) 

demonstrate that a robust TS algorithm can overcome an arbitrary starting solution. We 

investigate TS performance when provided multiple, high-quality initial solutions. 

When the tour construction heuristic generates a good starting solution for the TS, 

it finds high quality solutions rather quickly. However, the quality of the solutions 

generated depends on the configuration of the customers and the tour construction 
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heuristic used. Unfortunately, we do not know the customer configuration when the 

algorithm is developed. We can overcome this dilemma by generating multiple initial 

solutions using a tour construction heuristic with different initialization schemes and 

multiple parameter settings. In the next chapter, we discuss how we implement this 

approach. 
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Chapter 3. Methodology 

3.1 Solution Representation 

The first step in building our JTS hybrid algorithm is determining how we 

represent the solution in the algorithm. We use a solution representation developed by 

Harder (2000). Figure 1 shows the representation of the problem solution. 

Solution 

Tourl Tour 2 Tour n 

1 r 1 r v 
Customer 1 Vehicle Customer 1 Vehicle Customer 1 Vehicle 

+ + 1 
Customer 2 Customer 2 Customer 2 

• 
• 
* 

1 
▼ 

• 
• 
m 

1 
▼ 

• 
• 
m 

1 
▼ 

Customer ml Customer m2 Customer mn 

Figure 1 - Representation of Problem Solution 

Each solution is comprised of n tours, where n is the number of available vehicles. 

Each tour has an associated vehicle and an ordered list of customers. We evaluate each 

tour individually for solution quality based on the associated vehicle's attributes and 

depot location. If we lack the vehicle resources to cover all targets, a dummy tour 

contains customers that are not visited, and the solution is penalized based on the priority 

20 



of those customers. A significant advantage of this representation is it implicitly captures 

the standard tour (2), binary (6), and sub-tour breaking (7) constraints. 

3.2 Tour Construction Heuristic 

We build our 'jump point' solutions using an insertion heuristic based on 

Solomon (1987). While Solomon's insertion heuristic arbitrarily chooses the next tour to 

construct, we build a tour for the vehicle closest to the initializing customer, which allows 

us to take advantage of multiple depots. We account for a heterogeneous vehicle fleet by 

evaluating each vehicle by its individual capabilities and only assigning the vehicle 

customers it is capable of servicing. Restricted time windows, or time walls, are handled 

in a similar way to time windows by maintaining time windows/wall feasibility 

throughout the algorithm. To incorporate customer priorities, we remove customers from 

the dummy tour based on their priority (i.e., all priority 1 customers are assigned to real 

vehicles before priority 2 customers are considered). The logic flow for the tour 

construction algorithm is: 

Step CON-1:   Calculate cost matrix for each available vehicle. 

Step CON-2:   Build parameter matrix. 

Step CON-3:   Select the next set of parameters. 

Step CON-4:   Initialize the next tour based on the selected initialization method. 

Step CON-5:   Insert customers based on equations (8) and (9). 

Step CON-6:   When the tour is full return to CON-4. 

Step CON-7:   When all tours are full or all customers are assigned add the solution to the 

jump point array. 
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Step CON-8:   If all parameters have been used, return the jump point array, STOP. 

Otherwise, return to CON-3. 

3.2.1 Parameter Settings 

To develop a complete list of diverse starting solutions, we use a variety of 

parameter settings in our tour construction heuristic. We use each set of parameters in 

conjunction with both initialization criteria discussed in Section 3.2.2. We employ the 

following parameter ranges suggested by Rochat and Semet (1994) 

a\ = 0.0; 0.1;...; 1.0 

a2 = l-al 

fl) A = 1.25; 1.50; 1.75;2.00 anda = X-\ 

|2) A = 0.0;0.5; 1.0; 1.5 and \i = 1 

These parameter ranges, combined with both initialization methods, yield 176 different 

combinations. 

3.2.2 Tour Initialization 

Since we attempt to generate a list of diverse solutions, we use two initialization 

techniques. We modify the first initialization method to include penalties for time spent 

in threat areas or no-fly zones, effectively assigning the costliest customers first. Since 

we have multiple depots, we find the customer with the largest minimum cost to any of 

the remaining vehicles. We assign this customer to the nearest remaining vehicle and 

build a tour for that vehicle. 

For the second initialization method, we find the customer with the earliest 

deadline (latest arrival time). We assign the customer to the nearest remaining vehicle 
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and build a tour for that vehicle. Since we have a heterogeneous vehicle fleet, only 

vehicles capable of servicing the customer are considered. In both cases, priority of 

customers takes precedence over other selection criteria in initializing a tour. 

3.2.3 Customer Insertion 

Customers are inserted based on Solomon's original algorithm using equations (8) 

and (9). However, only customers the vehicle is capable of servicing are considered. The 

insertion considers customers in priority order and continues until all customers are 

assigned or all tours are full. 

Time window and time wall feasibility is maintained throughout the process. Due 

to Solomon's lemma, we are able to check time window and time wall feasibility very 

efficiently. Vehicle's arriving before a customer's time window must wait until the time 

window begins. Vehicle's unable to complete service before a customer's time wall 

begins must wait until the end of the time wall to start service. Only feasible customer 

insertions are considered. 

3.2.4 Completed Solutions 

A tour is full when any further insertions will violate time window/time wall 

feasibility or vehicle endurance. The solution is complete when all available vehicles 

have full tours or all customers have been assigned. We insert completed solutions into 

the jump point array in descending order of solution quality. 

A solution possessing the same number of vehicles, travel distance, waiting time, 

and penalty as an existing solution in the jump point array is considered equal to the 

solution and is discarded. In their original jump search algorithm, Tsubakitani and Evans 
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(1998) retained only the jump points from mutually exclusive neighborhoods. Even with 

the simplest of neighborhoods, this neighborhood determination becomes a complex and 

computationally expensive task. Through preliminary empirical testing on the Solomon 

MVH VRP TW test cases, we determined this approach was not cost-effective. The rate 

of duplicate best solutions found by the local search algorithms is less than 7% when all 

jump points are explored. Consequently, we simply retain all unique jump points. 

3.3 Local Search Heuristics 

We explore each jump point provided by our tour construction algorithm with 

three different local search heuristics: a first best local search, a global best local search, 

and a global best tabu search. As an experimental control, we test a reactive tabu search 

initialized two different ways. First, we generate all of the jump points and initialize the 

RTS with the best jump point (RTS-best). Second, we initialize the RTS after generating 

a single jump point (RTS-one). 

3.3.1 First Best Local Search 

The first best local search (FBLS) makes the first improving move found and 

continues doing so until no more improving moves can be found indicating we have 

reached a local optimum. For this algorithm, we consider only single customer insertion 

moves. A single customer can be removed from one tour and inserted into another tour 

or a different spot in the same tour. Only feasible insertions are considered. The logic 

flow for the FBLS algorithm is: 

Step FBLS-1: Improve tours individually by rearranging customers within tours. 

Step FBLS-2: Improve the solution further by rearranging customers between tours. 
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Step FBLS-3: If we found at least one improving move, try to assign customers from the 

dummy tour. 

Step FBLS-4: If we found at least one improving move, return to FBLS-1. 

Step FBLS-5: If we did not find an improving move, return the solution, STOP. 

3.3.1.1 Rearranging Customers within Tours 

Starting with the first customer in the first tour, we temporarily remove individual 

customers while noting the current cost to service that customer. The cost of servicing a 

customer is the travel distance, the wait time, and the penalty associated with the 

segments connecting the customer to the tour. These values for customer u currently 

between customers i and j can be calculated with the following equations 

diu + duj - dtj  where dy is the distance between / and j (10) 

[travel distance] 

wiu + wuj - Wjj  where Wy is the wait time wheny follows i (11) 

[wait time] 

Piu + Puj ~ Py where py is the penalty between i and j (12) 
[penalty] 

Using equations (10), (11), and (12), we calculate the cost to service the customer 

at every other position in the tour starting from the first position. If the new cost of 

service is less than the current cost of service, we check time window/time wall and 

vehicle endurance feasibility. If the move is feasible, we insert the customer in the new 

position and check the next customer. If we cannot find any feasible improving moves 

for the customer, we return it to its original position and check the next customer. 
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When we cannot find any feasible improving moves for the current tour, we check 

the next tour. When we can no longer improve any of the tours, we attempt to rearrange 

customers between tours. 

3.3.1.2 Rearranging Customers between Tours 

Starting with the first customer in the first tour, we try to find a cheaper position 

for the customer in another tour. We evaluate the current cost of service for the customer 

using equations (10), (11), and (12). 

We consider other tours in lexicographical order if the vehicle type is appropriate 

and there is sufficient capacity. If the vehicle can service the customer, we calculate the 

new cost of service for each position in the tour starting with the first position. If the new 

cost of service is less than the current cost of service, we check time window/time wall 

and vehicle endurance feasibility. If the move is feasible, we insert the customer in the 

new tour position and check the next customer. If we cannot find any feasible improving 

moves for the customer, we check the next customer. 

When we cannot find any feasible improving moves for any of the customers in 

the tour, we check the next tour. When we can no longer improve any of the tours by 

rearranging customers between them, we attempt to empty the dummy tour. 

3.3.1.3 Assigning Customers from the Dummy Tour 

By reducing the costs of the tours, we hope that we have made room for 

customers not currently assigned. Since we are maximizing coverage first and 

minimizing cost second, we assign customers from the dummy regardless of the increase 

in costs. 
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Considering each dummy tour customer in priority order, we consider inserting 

the customer into the other tours with appropriate vehicle type and sufficient capacity. If 

a vehicle can service the customer, we try to find the best feasible position for it in the 

tour. If we assign any customers from the dummy tour, we return to FBLS-1 and attempt 

to improve the solution further. 

3.3.2 Global Best Local Search 

The global best local search (GBLS) is similar to the FBLS algorithm; however, 

we check all possible moves in the current neighborhood before choosing the best move. 

As before, we consider only feasible single customer insertion moves. We stop when we 

cannot find any feasible improving moves indicating we have reached a local optimum. 

The logic flow of the global best local search algorithm is: 

Step GBLS-1: Check single customer insertions within tours. 

Step GBLS-2: Check single customer insertions between tours. 

Step GBLS-3: Make the best move found. 

Step GBLS-4: If we found an improving move, try to assign customers from the dummy 

tour. 

Step GBLS-5: If we found an improving move, return to GBLS-1. 

Step GBLS-6: If we did not find an improving move, return the solution, STOP. 

3.3.2.1 Check Insertions within Tours 

Considering each customer in each tour, we note the current cost to service that 

customer using equations (10), (11), and (12). We then determine the cost of inserting 

the customer into every other position in the current tour. 
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The current cost of service minus the new cost of service represents the savings 

achieved by making the move. If the amount saved is positive and greater than the best 

savings found so far, we check time window/time wall and vehicle endurance feasibility. 

If the move is feasible, the move is retained as the best so far. If we cannot find any 

feasible improving moves for the customer, we check the next customer. 

When we cannot find any feasible improving moves for any of the customers in 

the tour, we check the next tour. When we have checked all insertions within tours, we 

check insertions between tours. 

3.3.2.2 Rearranging Customers between Tours 

Starting with the first customer in the first tour, and considering all customers in 

all tours, we try to find a cheaper position for the customer in another tour whose vehicle 

is appropriate for the customer and has sufficient capacity. We evaluate the current cost 

of service for the customer using equations (10), (11), and (12). 

If the vehicle is capable of servicing the customer, we calculate the new cost of 

service for each position in the tour starting with the first position. If the amount saved is 

positive and greater than the best savings found so far, we check time window/time wall 

and vehicle endurance feasibility. If the move is feasible, the move is retained as the best 

so far. If we cannot find any feasible improving moves for the customer, we check the 

next customer. 

When we have checked all insertion moves within and between tours, we make 

the best move found. If we did not find a feasible improving move, we have reached a 
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local optimum and we return the solution. If we were able to make an improving move, 

we attempt to empty the dummy tour. 

3.3.2.3 Assigning Customers from the Dummy Tour 

Assigning customers from the dummy tour is accomplished exactly as in the 

FBLS algorithm explained in section 3.3.1.3. 

3.3.3 Global Best Tabu Search 

The global best tabu search (GBTS) is similar to the global best local search 

algorithm; however, we implement a tabu list to escape local optimum. The algorithm 

considers the same insertion moves as the first best and global best local search 

algorithms. 

At every iteration, all possible insertion moves are evaluated and the best feasible 

non-tabu move is chosen. The best move in this case may actually be non-improving. 

The algorithm continues for a minimum of 100 iterations. If the algorithm has found a 

new best solution within the final 10 iterations, the search continues until 10 iterations are 

performed without improving the best solution. We choose these values based on 

empirical testing. The flow of the global best tabu search algorithm is: 

Step GBTS-1: Check single customer insertions within tours. 

Step GBTS-2: Check single customer insertions between tours. 

Step GBTS-3: Check the tabu status of the best move found. If move is tabu and does 

not produce a solution better than the best found so far, check the next best 

move. If all feasible moves are tabu, the oldest half of the tabu list is 

discarded and the moves are checked again. 
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Step GBTS-4: After the move is made, it is added to the tabu list. 

Step GBTS-5: Check to see if the new solution is the best found so far. 

Step GBTS-6: If an improving move was made, try to assign customers from the dummy 

tour. 

Step GBTS-7: If we have not reached 100 iterations or we have found a new best solution 

in the last 10 iterations, return to GBTS-1. 

3.3.3.1 Check Insertions within Tours 

Checking for insertion moves within tours is the same as in the global best local 

search algorithm described in section 3.3.2.1. However, we accept non-improving 

moves, i.e. negative savings, and since our best move may be tabu, we retain the top 150 

moves. 

3.3.3.2 Rearranging Customers between Tours 

Again, this is done the same as in the global best local search algorithm described 

in section 3.3.2.2 with the exceptions noted in the previous paragraph. 

3.3.3.3 Checking the Tabu Status 

We use the customer number to denote the tabu status of a move. The length of 

the tabu list is set to 35% of the number of customers. How a move is denoted, the length 

of the tabu list, and the neighborhood size are closely tied. These factors must be 

balanced to avoid cycling and still conduct a thorough exploration of the search space 

near the jump point. We chose to set these factors based on empirical testing. 
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Aspiration criterion is a TS technique that allows a move to be made in spite of its 

tabu status. A very common aspiration criterion is to accept the move if that move leads 

to a new best solution. We use this criterion in our GBTS algorithm. If the top 150 

moves found are all tabu and do not meet the aspiration criterion, we discard the oldest 

half of the tabu list. 

3.3.3.4 Assigning Customers from the Dummy Tour 

Assigning customers from the dummy tour is accomplished exactly as in the 

FBLS algorithm explained in section 3.3.1.3. 

3.3.4 Reactive Tabu Search 

The reactive tabu search (RTS) algorithm is identical to the GBTS algorithm with 

two exceptions. The first difference is the number of iterations. The RTS algorithm 

executes for a minimum of 2000 iterations and continues until 200 iterations are 

performed without finding a new best solution. 

The second, and key, difference is that we adjust the length of the tabu list based 

on the productivity of the search. If we have performed 100 iterations without finding a 

new best solution, we increase the length of the tabu list by one. We continue increasing 

the length of the tabu list at each iteration until we find a new best solution or the length 

of the tabu list reaches 50% of the number of customers. At this point, we reset the 

length of the tabu list to 35% of the number of customers. As in the GBTS algorithm, if 

the top 150 moves found are all tabu and do not meet the aspiration criteria, we discard 

the oldest half of the tabu list. The flow of the reactive tabu search algorithm is: 
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Step RTS-1:    If we have performed 100 iterations without finding a new best solution 

and the length of the tabu list is less than 50% of the number of customers, 

increase the length of the tabu list by 1. If the length of the tabu list is 

50% of the number of customers, reset the length to 35% of the number of 

customers. 

Step RTS-2:    Check single customer insertions within tours. 

Step RTS-3:    Check single customer insertions between tours. 

Step RTS-4:    Check the tabu status of the best move found. If move is tabu and does 

not produce a solution better than the best found so far, check the next best 

move. If all feasible moves are tabu, the oldest half of the tabu list is 

discarded and the moves are checked again. 

Step RTS-5:    After the move is made, add it to the tabu list. 

Step RTS-6:    Check to see if the new solution is the best found so far. If so, reset the 

length of the tabu list to its original length. 

Step RTS-7:    If an improving move was made, try to assign customers from the dummy 

tour. 

Step RTS-8:    If we have not reached 2000 iterations or we have found a new best 

solution in the last 200 iterations, return to RTS-1. 

3.4 The Jump Search Algorithm 

Our JS algorithm uses the tour construction heuristic described in section 3.2 to 

generate up to 176 unique solutions. As each solution is generated, JS stores the solution 

in an array sorted in descending order by solution quality. JS then initializes a local 
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search using one of the local search algorithms described in section 3.3 for each jump 

point starting from the first. 

For the FBLS algorithm, we perform local searches from each jump point until 25 

jump points are searched without improving the best solution found. For the GBLS 

algorithm, we perform local searches from each jump point until 15 jump points are 

searched without improving the best solution found. For the GBTS algorithm, we 

perform searches from each jump point until 10 jump points are searched without 

improving the best solution found. These values are established through empirical testing 

described in section 4.4. The RTS algorithm explores only a single jump point, either the 

best jump point found (RTS-best) or a single generated jump point (RTS-one). 

3.5 Conclusion 

We design a representation of the solution that makes it easier to incorporate 

multiple heterogeneous vehicles and multiple depots. This solution also implicitly 

enforces the standard tour (2), binary (6), and sub-tour breaking (7) constraints. 

Our tour construction algorithm builds multiple high-quality jump point solutions. 

We then use three different local search algorithms, first best local search (FBLS), global 

best local search (GBLS), and global best tabu search (GBTS) to explore these jump 

points. 
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Chapter 4. Results 

4.1 Description of Solomon Instances 

We use the Solomon MVH VRP TW problem instances to test the performance of 

JTS against published solutions and to establish our parameter values. The Solomon 

problems were randomly generated to model several factors common to VRP TW 

problems. The factors modeled include geographic positioning, number of customers a 

vehicle can service, and time window characteristics such as the tightness of the time 

windows and the percentage of customers with time windows. 

The 56 Solomon problems are divided into six problem sets: Rl, Cl, RC1, R2, 

C2, and RC2. Each problem set has between 8 and 12 problems . Each problem contains 

data for 100 customers. The problems in sets Rl and R2 contain customers with random 

geographic coordinates. Sets Cl and C2 contain customers with clustered geographic 

coordinates. Sets RC1 and RC2 contain customers with both random and clustered 

coordinates. 

Each problem set contains problems in which 25%, 50%, 75%, or 100% of the 

customers have time windows. In sets Rl, Cl, and RC1, the time windows are short and 

vehicle capacities small. In sets R2, C2, and RC2, the time windows are long and 

vehicles capacities large allowing each vehicle to service more customers (Solomon, 

1987). 
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4.2 Tour Construction Parameters 

Our first task is to determine if all of the parameter values suggested by Rochat 

and Semet (1994) are needed. If any parameter is unnecessary, we can avoid generating 

all 176 starting solutions with the tour construction heuristics. We solve each instance of 

the Solomon test problems with the jump search first best (JFB), jump search global best 

(JGB), and jump search tabu search (JTS) algorithms. We note the parameter values used 

to generate the best solution found for each problem by each algorithm. 

If each parameter value has the same probability to generate the best solution, we 

would expect the values associated with the best solutions to appear in the same 

percentage as they appear in the parameter sets. Since we know the expected distribution 

of the parameter values, we can perform a goodness-of-fit test to determine if the actual 

distribution matches the expected distribution. 

We do not wish to tune our algorithm specifically to the Solomon problem sets. 

Therefore, we require a high degree of confidence, 95% overall, before rejecting the 

hypothesis that the actual distribution of parameter values is equal to the expected 

distribution. Parameter oc2 is derived from parameter al and has the same distribution. 

Since we have four parameter distributions and three algorithms, we must perform each 

hypothesis test at 99.58% to have a 95% percent confidence overall. 

Table 1 contains the expected distribution for each parameter and the actual 

distribution that produced the best solutions for each algorithm. When more than one 

parameter set produced the same best solution, a fractional count is added to the value 

cell. In all cases, the test statistic, X2, is less than the critical value so we fail to reject the 
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hypothesis that the data values fit the expected distribution. Therefore, we retain all 

parameter values for our algorithm. 

Table 1 - Parameter Value Goodness-of-fit Test 

parameter ori JFB JGB JTS expected value 
0.0 2.37 2.08 0.72 5.09 
0.1 5.58 4.15 3.80 5.09 
0.2 3.80 4.56 4.01 5.09 
0.3 2.16 2.71 3.66 5.09 
0.4 2.85 4.45 3.66 5.09 
0.5 7.16 2.00 8.45 5.09 
0.6 1.92 3.29 6.03 5.09 
0.7 9.01 9.67 5.93 5.09 
0.8 6.44 7.55 5.38 5.09 
0.9 5.54 5.54 5.33 5.09 
1.0 9.12 9.98 9.04 5.09 
X1 

X2(10,.0042) 
13.93 
25.68 

15.75 
25.68 

10.74 
25.68 

parameter \i JFB JGB JTS expected value 
0.25 
0.50 
0.75 
1.00 

4.61 
5.02 
4.71 
41.66 

3.39 
5.72 
10.10 
36.75 

9.31 
6.83 
5.97 
33.89 

7 
7 
7 

35 
X2 

X2(3,.0042) 
3.39 
13.21 

3.56 
13.21 

0.95 
13.21 

parameter A, JFB JGB JTS expected value 
0.00 1.33 1.67 2.53 7 
0.50 6.48 4.71 5.74 7 
1.00 9.22 12.69 9.72 7 
1.25 4.61 3.39 9.31 7 
1.50 18.90 14.39 13.45 14 
1.75 4.71 10.10 5.97 7 
2.00 10.75 8.98 9.28 7 

X2(6,.0042) 
10.63 
18.98 

13.24 
18.98 

5.81 
18.98 

init method JFB JGB JTS Expected 
0.0 
1.0 
xz 

*2(1,.0042) 

38.14 
17.86 
7.34 
8.20 

32.18 
23.82 
1.25 
8.20 

34.33 
21.67 
2.86 
8.20 

28 
28 
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4.3 Tabu List Length 

Having established our tour construction parameters, we next determine the 

length of our tabu list. Fixing the number of iterations to a base of 100 and increases of 

10 as described in section 3.3.3, we vary the length of the tabu list from 5% to 50% of the 

number of customers in 5% increments. 

Table 2 contains the sum of the average distances for each problem set produced 

by the JTS algorithm for problems with 25, 50,75, and 100 customers. The 25, 50, and 

75 customer problems are generated by using the first 25,50, and 75 customers of the 

100 customer problems. To simplify comparisons, we minimized distance only when 

solving each problem. The tabu list length appears in the column on the left. 

Since we believe the UAV problems will typically contain at least 100 customers, 

we give more credibility to the larger problems. While the difference in total distance is 

relatively small across the different tabu list lengths, there is a definite sweet spot 

between 30% and 40%. Therefore, we set the initial tabu list length to 35% of the 

number of customers. 

Table 2 - Tabu Length Test 

Length 25 Customers 50 Customers 75 Customers 100 Customers 
5% 2031.77 3662.49 5242.55 6256.46 
10% 2025.41 3646.82 5213.47 6219.27 
15% 2021.52 3640.00 5187.80 6202.68 
20% 2023.99 3628.76 5170.97 6193.59 
25% 2017.30 3606.87 5173.58 6186.90 
30% 2014.27 3614.20 5182.11 6179.16 
35% 2006.05 3608.99 5166.91 6179.06 
40% 2003.72 3597.96 5184.97 6178.50 
45% 2005.87 3597.00 5161.07 6187.97 
50% 2010.41 3596.24 5182.01 6200.39 
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4.4 Jump Points 

For the Solomon problem sets, the tour construction heuristic generates an 

average of 141.82 unique jump points. With 176 different parameter sets, the average 

percentage of duplicate jump points generated is 19%. Recall the generated jump points 

are ordered. When all jump points are explored, the average jump point index leading to 

the best solution is 42.84 for the JFB algorithm, 41.66 for the JGB algorithm, and 42.05 

for the JTS algorithm. This implies the better jump points lead to the best solutions. 

Table 3 - Average Best Jump Point Index 

JFB JGB JTS 
average best jump point              42.84                       41.66 42.05 

standard deviation 43.46 48.68 42.06 

Since timeliness of the solution is important to us, we do not want to explore all 

jump points. Rather than explore a fixed number of jump points, we establish the number 

of jump points to explore without finding a new best solution. If we explore this threshold 

number of jump points without improving the best solution so far, the overall search 

process is halted. By setting this threshold higher, we may improve the solution; 

however, we will definitely increase the runtime of the algorithm. This tradeoff between 

solution time and quality is a common tradeoff in heuristic implementation. 

Table 4 contains the average distance found at different jump point thresholds for 

the JFB algorithm. The column on the far right shows how much we can improve the 

solution if we simply continued on from that threshold point to explore all points. When 

we reach a point within 1% of the best distance, we feel we have explored a sufficient 
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number of jump points. For the JFB algorithm, this point is reached with a threshold of 

25 jump points. 

Table 4 - Jump Point Thresholds for JFB 

Jump Point % Over 
Threshold Rl Cl RC1 R2 C2 RC2     Total Best 

1 1279.43 845.39 1439.83 1017.80 600.08 1264.76 6447.29 3.61% 
5 1271.39 842.20 1431.39 1010.43 598.53 1237.03 6390.97 2.70% 
10 1269.77 841.11 1427.81 1003.87 598.53 1199.49 6340.58 1.89% 
15 1265.75 841.11 1425.02 997.78 598.53 1186.48 6314.67 1.48% 
20 1265.75 841.11 1421.64 994.18 598.53 1169.18 6290.39 1.09% 
25 1262.55 834.82 1421.64 988.88 598.53 1169.18 6275.60 0.85% 
30 1260.94 834.82 1421.64 982.68 598.53 1165.70 6264.31 0.67% 
all 1252.69 833.97 1419.90 976.26 598.53 1141.41 6222.76 

Table 5 contains the same data for the JGB algorithm. For the JGB algorithm, we 

are within 1% of the best with a threshold of 15 jump points. 

Table 5 - Jump Point Thresholds for JGB 

Jump Point % Over 
Threshold Rl 

1273.49 
Cl RC1 R2 C2 RC2 Total Best 

1 834.28 1444.23 1018.93 595.27 1226.34 6392.54 2.87% 
5 1259.86 833.19 1435.39 1004.8 593.16 1203.08 6329.48 1.85% 
10 1259.24 833.19 1426.77 999.51 593.16 1176.37 6288.24 1.19% 
15 1256.59 833.19 1426.77 986.36 593.16 1175.17 6271.24 0.91% 
20 1254.13 833.19 1422.21 986.36 593.16 1171.72 6260.77 0.75% 
25 1253.6 833.19 1418.24 985.54 593.16 1168.81 6252.54 0.61% 
30 1252.07 833.19 1418.24 984.14 593.16 1166.95 6247.75 0.54% all 1244.96 833.19 1417.27 973.76 593.16 1152.05 6214.39 

we Table 6 contains the same data for the JTS algorithm. For the JTS algorithm, 

are within 1 % of the best with a threshold of 25 jump points. However, the JTS 

algorithm takes much longer to explore each jump point than either of the other 

algorithms. Since we believe the UAV problems will have a minimum of 100 customers, 
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we would like the average total solution time for the 100 customer problems to be under 

one minute on a Pentium II400 MHz processor. 

Table 6 - Jump Point Thresholds for JTS 

Jump Point % Over 
Threshold Rl Cl RC1 R2 C2 RC2 Total Best 

1 1239.26 832.91 1410.55 999.48 593.74 1186.38 6262.32 2.68% 
5 1231.15 832.91 1404.57 980.38 593.16 1146.76 6188.93 1.48% 
10 1230.27 832.91 1399.79 976.17 593.16 1146.76 6179.06 1.32% 
15 1228.53 832.77 1397.84 971.15 593.16 1146.76 6170.21 1.17% 
20 1228.53 832.77 1396.09 966.74 593.16 1146.76 6164.05 1.07% 
25 1227.45 832.77 1396.09 958.96 593.16 1138.09 6146.52 0.78% 
30 1227.45 832.77 1396.09 958.74 593.16 1138.09 6146.30 0.78% 
all 1222.86 832.77 1389.86 950.36 593.16 1109.69 6098.70 

For the JTS algorithm, the number of iterations performed on each jump point and 

the number of jump points explored determine the total solution time of the algorithm. 

These factors also provide the balance between intensification and diversification. Table 

7 contains the average distances for three iteration and threshold combinations with the 

desired average solution time. 

Table 7 - Threshold / Iteration Combinations for JTS 

Jump 
Point 

Threshold Iterations     Rl Cl RC1 R2        C2        RC2      Total 
10 100       1230.27   832.91    1399.79   976.17   593.16   1146.76  6179.06 
15 75        1230.82   832.77    1401.31    972.88   593.16   1151.72  6182.65 

.20 50       1234.61   832.77    1406.10   972.48   593.16   1148.66  6187.78 

Although there is no statistical difference between the different combinations, our 

intuition leads us to choose a threshold of 10 jump points and a base of 100 iterations. 
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4.5 Heuristic Analysis 

To compare the performance of our algorithms, we solved the Solomon problem 

sets with each algorithm attempting to minimize distance. The distances produced by the 

algorithms are not normally distributed, so we use non-parametric techniques for 

comparison. Table 8 contains the minimum distance found for each problem by each 

algorithm. 

We use the sign test to compare our algorithms. We perform a pair-wise 

comparison of the algorithms two at a time and count the number of occurrences where 

algorithm one is better than algorithm two. We determine the probability of this count 

based on a binomial distribution with 50% probability. If the two algorithms are equal in 

efficiency, we would expect each algorithm to have an equal chance of producing the 

better answer. 

With the exception of the JTS algorithm, none of the algorithms proved 

statistically superior to the others. The JTS algorithm proved statistically superior to the 

JFB and JGB algorithms with p-values of less than 0.0001 supporting our hypothesis that 

exploring the jump points beyond the first local optimal improves the algorithm. 
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Table 8 - Minimum Distances Found by All Algorithms 

Problem JFB JGB JTS RTS - best RTS - one 
rlOl 1712.64 1704.81 1678.37 1707.18 1734.13 
rl02 1535.42 1529.47 1485.33 1500.62 1482.81 
rl03 1289.28 1296.38 1266.67 1247.28 1240.34 
rl04 1068.62 1056.90 1032.15 1066.83 1085.20 
rl05 1433.37 1433.89 1404.25 1446.50 1389.22 
rl06 1315.17 1296.50 1291.17 1304.70 1332.21 
rl07 1145.48 1159.27 1123.80 1147.27 1106.34 
rl08 1049.11 1030.68 992.83 1063.37 1063.37 
rl09 1259.32 1228.25 1215.47 1276.89 1271.51 
rllO 1171.88 1170.23 1153.36 1162.44 1212.26 
rill 1137.59 1130.52 1107.82 1135.11 1097.74 
rll2 1032.75 1042.18 1012.07 1001.88 1058.33 

Rl Average 1262.55 1256.59 1230.27 1255.01 1256.12 
clOl 828.93 828.93 828.93 828.93 828.93 
cl02 828.93 828.93 828.93 936.72 928.01 
cl03 839.57 831.86 829.27 829.27 836.67 
cl04 871.34 864.37 864.37 859.39 843.65 
cl05 828.93 828.93 828.93 828.93 828.93 
cl06 828.93 828.93 828.93 828.93 862.26 
cl07 828.93 828.93 828.93 828.93 828.93 
cl08 828.93 828.93 828.93 848.93 828.93 
cl09 828.93 828.93 828.93 828.93 828.93 

Cl Average 834.82 833.19 832.91 846.55 846.14 
rclOl 1694.74 1694.75 1693.47 1726.92 1690.05 
rcl02 1515.44 1507.35 1500.68 1520.47 1522.35 
re 103 1384.37 1384.71 1362.87 1331.54 1364.30 
rcl04 1221.98 1238.79 1216.71 1181.71 1220.52 
re 105 1604.82 1612.19 1558.09 1611.83 1598.35 
rcl06 1435.26 1428.87 1419.05 1461.27 1443.11 
rcl07 1303.18 1334.34 1280.41 1270.37 1376.36 
rcl08 1213.36 1213.16 1167.04 1233.66 1197.25 

RC1 Average 1421.64 1426.77 1399.79 1417.22 1426.54 
r201 1291.00 1281.64 1324.45 1298.40 1329.24 
r202 1120.05 1140.40 1127.76 1133.52 1108.41 
r203 969.90 976.44 967.56 1032.61 947.55 
r204 830.48 817.28 810.44 803.14 839.18 
r205 1126.92 1134.40 1073.52 1046.21 1098.40 
r206 983.72 991.80 996.07 990.65 972.62 
r207 905.39 904.94 894.59 884.83 896.74 
r208 784.72 770.42 749.85 748.28 784.46 
r209 1010.87 986.97 969.93 952.30 947.99 
r210 991.23 979.51 966.67 981.90 1050.54 
r211 863.43 866.17 857.06 899.51 832.97 

R2 Average 988.88 986.36 976.17 979.21 982.55 
c201 591.55 591.55 591.55 591.55 591.55 
c202 591.55 591.55 591.55 591.55 591.55 
c203 628.81 617.61 617.61 591.17 591.17 
c204 622.34 590.59 590.59 590.59 878.62 
c205 588.87 588.87 588.87 588.87 588.87 
c206 588.49 588.49 588.49 588.49 588.49 
c207 588.28 588.28 588.28 588.28 588.28 
c208 588.32 588.32 588.32 588.32 588.32 

C2 Average 598.53 593.16 593.16 589.85 625.86 
rc201 1449.02 1480.89 1409.22 1578.30 1504.80 
rc202 1327.54 1305.57 1305.57 1383.43 1248.23 
rc203 1107.86 1142.96 1102.81 1131.34 1182.34 
rc204 880.26 917.30 876.59 913.57 913.57 
rc205 1342.63 1316.62 1315.15 1433.18 1437.76 
rc206 1194.53 1218.82 1172.22 1289.79 1187.08 
rc207 1106.25 1134.32 1123.77 1193.56 1065.96 
rc208 945.37 884.84 868.76 868.76 894.58 

RC2 Average 1169.18 1175.17 1146.76 1223.99 1179.29 
Overall Average 1054.58 1053.37 1037.77 1058.91 1059.83 
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As expected, the JFB and JGB algorithms are both statistically faster in solve time 

with p-values of less than 0.0001. Table 9 contains the average CPU time to find the best 

solution and the average total solution CPU time (in seconds on a Pentium II400 MHz 

processor) for all algorithms. All algorithms are coded using Java 1.2. 

Table 9 - Average Solve Times for All Algorithms 

Average 
Time (sees) JFB JGB JTS RTS - best RTS - one 
Best Found 

Total 
19.50 
26.40 

19.58 
33.79 

20.32 
56.49 

19.54 
55.54 

12.33 
32.33 

The JTS proved statistically superior to both RTS algorithms with p-values of 

0.044 for RTS-best and 0.036 for RTS-one. This supports our hypothesis that multiple 

starting points are an effective diversification and intensification strategy for tabu search. 

We did not find any statistical difference in best found or total run times between 

the JTS and the RTS-best algorithm.   The RTS-one algorithm is statistically faster than 

the JTS algorithm, as RTS-one does not generate multiple jump points. 

4.6 Comparison to O'Rourke's Reactive Tabu Search Algorithm 

Admittedly, our RTS algorithm lacks any complex or sophisticated search 

strategies. We compare our results to those produced by O'Rourke and Ryer's RTS 

algorithm which incorporates a reactive penalty scheme as well as a reactive tabu list 

length (O'Rourke 1999, Ryer 1999). Their algorithm is written in Java and executed on a 

Pentium II 400MHz processor just as our JTS algorithm. 

Tables 10, 11, 12 contain the minimum distances found, the time the best solution 

was found, and total solve time for both O'Rourke and Ryer's RTS and our JTS 
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algorithms. The 25 and 50 customer problems are generated by using the first 25 and 50 

customers of the 100 customer problems. Distances between customers are truncated to 

the tenths digit before each problem is solved. From the tables, it is clear JTS achieves 

the same quality of solutions with significant savings in computational effort. 

The first column shows the problem number. Four columns a provided for each 

algorithm denoting the minimum distance found, number of vehicles used, the CPU time 

the best solution was found (in seconds), and the total CPU run time of the algorithm. 

O'Rourke and Ryer only provide an approximate average total time for each problem 

size. The final three columns show the percent difference for the JTS algorithm from 

O'Rourke and Ryer in terms of minimum distance, time best found, and total run time. 
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Table 10 - Comparison on Solomon 25 Customer Problems 

25 Customer 
Problems O'Rourke & Ryer Jump Tabu Search Percent Difference 

Number Time Approx. Number Time Time 
of Best Total of Best Total Best Total 

Distance Vehicles Found Time Distance Vehicles Found Time Distance Found Time 
rlOl 617.1 8.0 4 28 617.1 8.0 0.38 1.15 0.0% -90.5% -95.9% 
rl02 547.1 7.0 1 28 547.1 7.0 0.38 1.87 0.0% -62.0% -93.3% 
rl03 454.1 5.0 1 28 463.5 6.0 0.44 1.53 2.1% -56.0% -94.5% 
rl04 416.9 4.0 2 28 436.0 5.0 0.33 1.82 4.6% -83.5% -93.5% 
rl05 530.5 6.0 1 28 530.5 6.0 0.44 1.15 0.0% -56.0% -95.9% 
rl06 465.4 5.0 12 28 465.4 5.0 0.38 2.09 0.0% -96.8% -92.5% 
rl07 424.3 4.0 24 28 424.3 4.0 0.55 1.76 0.0% -97.7% -93.7% 
rl08 397.3 4.0 1 28 397.3 4.0 0.60 1.65 0.0% -40.0% -94.1% 
rl09 441.3 5.0 1 28 441.3 5.0 0.44 1.49 0.0% -56.0% -94.7% 
rllO 444.1 5.0 1 28 444.1 5.0 0.55 1.31 0.0% -45.0% -95.3% 
rill 428.8 4.0 3 28 438.3 4.0 0.44 1.82 2.2% -85.3% -93.5% 
rll2 393.0 4.0 1 28 402.0 4.0 0.55 1.75 2.3% -45.0% -93.8% 

Rl Average 463.3 5.1 4.3 28.0 467.2 5.3 0.5 1.6 0.9% -67.8% -94.2% 

clOl 191.3 3.0 0 28 191.3 3.0 0.11 1.16 0.0% N/A -95.9% 
cl02 190.3 3.0 1 28 190.3 3.0 0.55 1.97 0.0% -45.0% -93.0% 
cl03 190.3 3.0 1 28 190.3 3.0 0.55 1.82 0.0% -45.0% -93.5% 
cl04 186.9 3.0 8 28 190.0 3.0 0.61 1.65 1.7% -92.4% -94.1% 
cl05 191.3 3.0 1 28 191.3 3.0 0.33 1.21 0.0% -67.0% -95.7% 
cl06 191.3 3.0 1 28 191.3 3.0 0.16 1.21 0.0% -84.0% -95.7% 
cl07 191.3 3.0 0 28 191.3 3.0 0.38 1.26 0.0% N/A -95.5% 
cl08 191.3 3.0 4 28 191.3 3.0 0.55 1.37 0.0% -86.3% -95.1% 
cl09 191.3 3.0 2 28 191.3 3.0 0.33 1.60 0.0% -83.5% -94.3% 

Cl Average 190.6 3.0 2.0 28.0 190.9 3.0 0.4 1.5 0.2% -71.9% -94.7% 

rclOl 461.1 4.0 2 28 461.1 4.0 0.44 1.21 0.0% -78.0% -95.7% 
rcl02 351.7 3.0 1 28 351.8 3.0 0.22 1.32 0.0% -78.0% -95.3% 
rcl03 332.8 3.0 2 28 332.8 3.0 0.33 1.43 0.0% -83.5% -94.9% 
re 104 306.6 3.0 1 28 308.7 3.0 0.49 1.37 0.7% -51.0% -95.1% 
re 105 411.2 4.0 1 28 416.1 4.0 0.05 1.21 1.2% -95.0% -95.7% 
re 106 345.5 3.0 1 28 345.5 3.0 0.39 1.32 0.0% -61.0% -95.3% 
re 107 298.3 3.0 2 28 298.3 3.0 0.55 1.43 0.0% -72.5% -94.9% 
re 108 294.5 3.0 3 28 294.5 3.0 0.55 1.48 0.0% -81.7% -94.7% 

RC1 Average 350.2 3.3 1.6 28.0 351.1 3.3 0.4 1.3 0.2% -75.1% -95.2% 

Overall 347.5 3.9 2.9 28.0 349.5 4.0 0.4 1.5 0.5% -71.0% -94.7% 
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Table 11 - Comparison on Solomon 50 Customer Problems 

50 Customer 
Problems O'Rourke & Ryer Jump Search Percent Difference 

Number Time Approx. Number Time Time 
of Best Total of Best Total Best Total 

Distance Vehicles Found Time Distance Vehicles Found Time Distance Found Time 
rlOl 1043.8 12.0 9 100 1051.4 13.0 1.32 5.77 0.7% -85.3% -94.2% 
rl02 909.0 11.0 82 100 916.0 12.0 2.03 6.37 0.8% -97.5% -93.6% 
rl03 778.7 9.0 87 100 781.5 9.0 2.31 7.80 0.4% -97.3% -92.2% 
rl04 637.4 6.0 69 100 635.8 6.0 1.54 8.29 -0.3% -97.8% -91.7% 
rl05 901.6 9.0 16 100 916.9 10.0 1.54 6.81 1.7% -90.4% -93.2% 
rl06 793.0 8.0 99 100 798.5 8.0 2.31 6.54 0.7% -97.7% -93.5% 
rl07 711.1 7.0 79 100 723.1 7.0 0.66 6.76 1.7% -99.2% -93.2% 
rl08 617.7 6.0 78 100 630.2 6.0 2.19 13.73 2.0% -97.2% -86.3% 
rl09 786.7 8.0 61 100 814.9 9.0 2.03 6.75 3.6% -96.7% -93.3% 
rllO 707.8 7.0 84 100 697.0 7.0 2.04 7.20 -1.5% -97.6% -92.8% 
rill 716.6 7.0 76 100 722.0 7.0 2.48 13.02 0.8% -96.7% -87.0% 
rll2 635.0 6.0 68 100 652.3 7.0 2.75 7.53 2.7% -96.0% -92.5% 

Rl Average 769.9 8.0 67.3 100.0 778.3 8.4 1.9 8.0 1.1% -95.8% -92.0% 

clOl 362.4 5.0 3 100 362.4 5.0 1.75 5.65 0.0% -41.7% -94.4% 
cl02 361.4 5.0 9 100 361.4 5.0 2.15 5.72 0.0% -76.1% -94.3% 
cl03 361.4 5.0 87 100 361.4 5.0 2.14 6.59 0.0% -97.5% -93.4% 
cl04 382.8 5.0 79 100 364.9 5.0 2.85 6.20 -4.7% -96.4% -93.8% 
cl05 362.4 5.0 19 100 362.4 5.0 2.04 5.94 0.0% -89.3% -94.1% 
cl06 362.4 5.0 4 100 362.4 5.0 1.92 5.65 0.0% -52.0% -94.4% 
cl07 362.4 5.0 6 100 362.4 5.0 1.76 5.82 0.0% -70.7% -94.2% 
cl08 362.4 5.0 4 100 362.4 5.0 1.93 6.05 0.0% -51.8% -94.0% 
cl09 362.4 5.0 26 100 362.4 5.0 1.59 5.82 0.0% -93.9% -94.2% 

Cl Average 364.4 5.0 26.3 100.0 362.5 5.0 2.0 5.9 -0.5% -74.4% -94.1% 

rclOl 946.8 8.0 60 100 948.9 8.0 1.98 6.10 0.2% -96.7% -93.9% 
rcl02 831.8 7.0 60 100 843.4 8.0 1.43 7.09 1.4% -97.6% -92.9% 
rcl03 710.9 6.0 94 100 779.6 7.0 2.14 5.77 9.7% -97.7% -94.2% 
rcl04 546.5 5.0 18 100 548.2 5.0 2.14 5.16 0.3% -88.1% -94.8% 
re 105 855.3 8.0 4 100 859.8 8.0 0.87 10.32 0.5% -78.3% -89.7% 
re 106 723.2 6.0 58 100 765.6 6.0 0.94 6.21 5.9% -98.4% -93.8% 
re 107 644.4 6.0 36 100 652.5 6.0 1.43 5.55 1.3% -96.0% -94.5% 
re 108 598.1 6.0 58 100 603.9 6.0 2.58 9.06 1.0% -95.6% -90.9% 

RC1 Average 732.1 6.5 48.5 100.0 750.2 6.8 1.7 6.9 2.5% -93.5% -93.1% 

Overall 633.6 6.7 49.4 100.0 641.5 6.9 1.9 7.1 1.0% -88.5% -92.9% 
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Table 12 - Comparison on Solomon 100 Customer Problems 

100 Customer 
Problems O'Rourke & Ryer Jump Search Percent Difference 

Number Time Approx. Number Time Time 
of Best Total of Best Total Best Total 

Distance Vehicles Found Time Distance Vehicles Found Time Distance Found Time 
rlOl 1676.2 20.0 414 550 1672.8 20.0 8.41 37.90 -0.2% -98.0% -93.1% 
rl02 1502.4 19.0 96 550 1493.9 19.0 9.61 41.64 -0.6% -90.0% -92.4% 
rl03 1265.0 15.0 228 550 1245.6 15.0 8.29 58.66 -1.5% -96.4% -89.3% 
rl04 1039.6 12.0 338 550 1038.7 12.0 11.92 63.05 -0.1% -96.5% -88.5% 
rl05 1399.4 16.0 378 550 1397.5 15.0 8.13 40.76 -0.1% -97.8% -92.6% 
rl06 1268.4 14.0 491 550 1286.3 13.0 9.33 34.93 1.4% -98.1% -93.6% 
rl07 1129.0 13.0 406 550 1086.8 11.0 9.61 38.56 -3.7% -97.6% -93.0% 
rl08 956.8 10.0 565 550 990.7 11.0 12.02 46.74 3.5% -97.9% -91.5% 
rl09 1181.0 14.0 311 550 1223.7 12.0 9.39 57.78 3.6% -97.0% -89.5% 
rllO 1133.2 13.0 328 550 1139.0 12.0 10.98 38.39 0.5% -96.7% -93.0% 
rill 1077.3 12.0 491 550 1096.4 12.0 10.93 48.17 1.8% -97.8% -91.2% 
rll2 971.6 11.0 460 550 978.4 11.0 12.63 46.63 0.7% -97.3% -91.5% 

Rl Average 1216.7 14.1 375.5 550.0 1220.8 13.6 10.1 46.1 0.4% -96.7% -91.6% 

clOl 827.3 10.0 43 550 827.3 10.0 6.86 28.56 0.0% -84.0% -94.8% 
cl02 827.3 10.0 253 550 827.3 10.0 7.58 25.70 0.0% -97.0% -95.3% 
cl03 828.9 10.0 535 550 827.4 10.0 9.73 25.44 -0.2% -98.2% -95.4% 
cl04 950.0 10.0 509 550 863.6 10.0 11.31 29.98 -9.1% -97.8% -94.5% 
cl05 827.3 10.0 65 550 827.3 10.0 0.77 27.02 0.0% -98.8% -95.1% 
cl06 827.3 10.0 55 550 827.3 10.0 8.24 26.09 0.0% -85.0% -95.3% 
cl07 827.3 10.0 210 550 827.3 10.0 2.80 28.12 0.0% -98.7% -94.9% 
cl08 827.3 10.0 321 550 827.3 10.0 8.13 24.22 0.0% -97.5% -95.6% 
cl09 853.3 10.0 463 550 827.3 10.0 6.21 26.64 -3.0% -98.7% -95.2% 

Cl Average 844.0 10.0 272.7 550.0 831.3 10.0 6.8 26.9 -1.4% -95.1% -95.1% 

rclOl 1669.9 16.0 381 550 1688.2 16.0 6.86 39.21 1.1% -98.2% -92.9% 
rcl02 1498.4 15.0 419 550 1510.9 15.0 8.40 36.52 0.8% -98.0% -93.4% 
rcl03 1363.6 13.0 270 550 1320.7 12.0 10.60 37.74 -3.1% -96.1% -93.1% 
rcl04 1179.2 11.0 308 550 1206.8 11.0 10.76 30.75 2.3% -96.5% -94.4% 
re 105 1557.4 15.0 473 550 1557.3 15.0 6.37 36.03 0.0% -98.7% -93.4% 
re 106 1432.8 13.0 434 550 1415.2 13.0 7.58 53.72 -1.2% -98.3% -90.2% 
re 107 1266.1 12.0 417 550 1269.7 12.0 9.99 54.37 0.3% -97.6% -90.1% 
re 108 1175.1 12.0 475 550 1170.4 11.0 11.37 30.16 -0.4% -97.6% -94.5% 

RC1 Average 1392.8 13.4 397.1 550.0 1392.4 13.1 9.0 39.8 0.0% -97.6% -92.8% 

Overall 1149.6 12.6 349.6 550.0 1147.3 12.3 8.8 38.4 -0.3% -96.5% -93.0% 
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4.7 Comparison to Best Known Solutions for Solomon's MVRPTW Instances 

More commonly, the Solomon instances are solved by minimizing vehicles first, 

then total distance. Table 13 contains the solutions produced by the JTS algorithm based 

on this criterion. The solutions are compared to the best known solutions for each of the 

problems. Minimum vehicles is achieved by attempting to solve each problem with the 

amount of vehicles used by the best known solution for that problem. If JTS is unable to 

find a solution that visits all of the customers with the minimum number of vehicles, the 

number of vehicles is increased by one until JTS can find a complete solution. 

Columns 2 and 3 contain the minimum distance and number of vehicles for the 

best known solution. Column 4 contains a reference for the source of the best known 

solution. Columns 5 and 6 contain the minimum distance and number of vehicles found 

by JTS. The last two columns show the percent difference in minimum distance and 

number of vehicles for JTS over the best known solutions. The best known solutions to 

the Cl problem set are proven optimal solutions and were solved with distance between 

customers truncated to tenths digit before the problem is solved. 

While it is difficult to compare CPU times across different programming 

languages and processors, the algorithms producing the best known solutions used 

significantly more CPU time than JTS. In some cases, the algorithms were executed 

multiple times with different random seeds. For JTS, the average CPU time to find the 

best solution is 31.3 seconds and the average total solve time is 48.8 seconds on a 

Pentium II400 MHz processor. 
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Table 13 - Comparison to Best Known Solutions for Solomon Instances 
Problem Best Known Source JTS Percentage from Best 

Distance NV Distance NV Distance NV 
rlOl 1607.70 18 Desrochers et al 1992 1679.42 19 4.5% 5.6% 
rl02 1434.00 17 Desrochers et al 1992 1485.33 18 3.6% 5.9% 
rl03 1207.00 13 Thangiah «fa/1994 1295.77 14 7.4% 7.7% 
rl04 1007.31 9 Shaw 1997 1100.88 10 9.3% 11.1% 
rl05 1377.10 14 Rochat and Taillard 1995 1449.30 14 5.2% 0.0% 
rl06 1252.03 12 Rochat and Taillard 1995 1357.88 12 8.5% 0.0% 
rl07 1104.66 10 Shaw 1997 1109.70 11 0.5% 10.0% 
rl08 963.99 9 Shaw 1997 994.10 10 3.1% 11.1% 
rl09 1205.96 11 Shaw 1997 1274.81 12 5.7% 9.1% 
rllO 1135.07 10 Shaw 1997 1171.37 11 3.2% 10.0% 
rill 1096.73 10 Shaw 1997 1144.94 11 4.4% 10.0% 
rll2 953.63 10 Rochat and Taillard 1995 1022.16 10 7.2% 0.0% 

Rl Average 1195.43 11.92 1257.14 12.67 5.16% 6.29% 
clOl 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0% 
cl02 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0% 
cl03 826.30 10 Kohl and Madsen 1997 829.27 10 0.4% 0.0% 
cl04 822.90 10 Kohl and Madsen 1997 864.37 10 5.0% 0.0% 
cl05 827.30 10 Kohl and Madsen 1997 828.93 10 0.2% 0.0% 
cl06 827.30 10 Desrochers«» al 1992 828.93 10 0.2% 0.0% 
cl07 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0% 
cl08 827.30 10 Desrochers etal 1992 828.93 10 0.2% 0.0% 
cl09 827.30 10 Kohl and Madsen 1997 828.93 10 0.2% 0.0% 

Cl Average 826.70 10.00 832.91 10.00 0.75% 0.00% 
rclOl 1669.00 14 Thangiah er a/1994 1707.31 15 2.3% 7.1% 
rcl02 1554.75 12 Taillard etal 1997 1576.64 14 1.4% 16.7% 
rcl03 1110.00 11 Thangiahefa/1994 1356.07 12 22.2% 9.1% 
rcl04 1135.48 10 Shaw 1997 1216.71 11 7.2% 10.0% 
rcl05 1643.38 13 Taillard etal 1997 1569.86 15 -4.5% 15.4% 
rcl06 1448.26 11 Taillard et al 1997 1454.40 12 0.4% 9.1% 
rcl07 1230.48 11 Shaw 1997 1289.34 12 4.8% 9.1% 
rcl08 1139.82 10 Taillard et al 1997 1171.26 11 2.8% 10.0% 

RC1 Average 1366.40 11.50 1417.70 12.75 3.75% 10.87% 
r201 1254.09 4 Kilby« a/1997 1351.94 4 7.8% 0.0% 
r202 1214.28 3 Taillard etal 1997 1127.77 4 -7.1% 33.3% 
r203 948.74 3 Rochat and Taillard 1995 962.74 3 1.5% 0.0% 
r204 867.33 2 Kilby etal 1997 815.69 3 -6.0% 50.0% 
r205 998.72 3 Kilby «a/1997 1098.23 3 10.0% 0.0% 
r206 833.00 3 Thangiahe/a/1994 996.07 3 19.6% 0.0% 
r207 814.78 3 Rochat and Taillard 1995 894.59 3 9.8% 0.0% 
r208 738.60 2 Rochat and Taillard 1995 792.82 2 7.3% 0.0% 
r209 855.00 3 Thangiah et al 1994 982.44 3 14.9% 0.0% 
r210 963.37 3 Kilby etal 1997 1009.91 3 4.8% 0.0% 
r211 923.80 2 Taillard et al 1997 857.06 3 -7.2% 50.0% 

R2 Average 946.52 2.82 989.93 3.09 4.59% 9.68% 
c201 591.56 3 Potvin and Bengio 1996 591.55 3 0.0% 0.0% 
c202 591.56 3 Potvin and Bengio 1996 591.55 3 0.0% 0.0% 
c203 591.17 3 Rochat and Taillard 1995 617.61 3 4.5% 0.0% 
c204 590.60 3 Potvin and Bengio 1996 590.59 3 0.0% 0.0% 
c205 588.88 3 Potvin and Bengio 1996 588.87 3 0.0% 0.0% 
c206 588.49 3 Porvin and Bengio 1996 588.49 3 0.0% 0.0% 
c207 588.29 3 Rochat and Taillard 1995 588.28 3 0.0% 0.0% 
c208 588.32 3 Rochat and Taillard 1995 588.32 3 0.0% 0.0% 

C2 Average 589.86 3.00 593.16 3.00 0.56% 0.00% 
rc201 1406.94 4 Kilby et al 1997 1513.79 4 7.6% 0.0% 
rc202 1162.80 4 Kilby et al 1997 1310.36 4 12.7% 0.0% 
rc203 1068.07 3 Kilby etal 1997 1139.71 3 6.7% 0.0% 
rc204 803.90 3 Kilby« al 1997 876.59 3 9.0% 0.0% 
rc205 1302.42 4 Kilby etal 1997 1463.48 4 12.4% 0.0% 
rc206 1156.26 3 Kilby etal 1997 1288.20 3 11.4% 0.0% 
rc207 1075.25 3 Kilby etal 1997 1175.33 3 9.3% 0.0% 
rc208 833.97 3 Rochat and Taillard 1995 868.76 3 4.2% 0.0% 

RC2 Average 1101.20 3.38 1204.53 3.38 9.38% 0.00% 
Overall 1004.35 7.10 1049.23 7.49 4.03% 4.47% 
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4.8 Multiple Depot Problems 

The Solomon problem instances do not model such factors as multiple depots, a 

heterogeneous vehicle fleet, customer priorities, and time walls. These factors are 

modeled in our algorithm; however, as demonstrated in the previous section, these factors 

do not affect the quality of the solution when they are not present in the problem. 

Cordeau et al (1997) develops 10 randomly generated MD VRPs to test their tabu 

search heuristic. These problems vary in terms of number and location of customers, 

number of depots, number of vehicles, maximum route length, and vehicle capacity. The 

objective is to find the shortest tour visiting all of the customers. Table 14 compares the 

distances found by the JTS algorithm to those reported by Cordeau et al (1997). 

Table 14 - Comparison on Cordeau et al MD VRPs 

Number Number JTS 
Problem of of Route Vehicle Number of Cordeau et al Best Percent 
Number Vehicles Depots Length Capacity Customers Best Distance Distance Difference 

prOl 1 4 500 200 48 861.32 909.89 5.64% 
pr02 2 4 480 195 96 1307.61 1386.11 6.00% 
pr03 3 4 460 190 144 1806.60 1910.31 5.74% 
pr04 4 4 440 185 192 2072.52 2198.60 6.08% 
pr05 5 4 420 180 240 2385.77 2570.21 7.73% 
pr06 6 4 400 175 288 2723.27 3000.13 10.17% 
pr07 1 6 500 200 72 1089.56 1132.24 3.92% 
pr08 2 6 475 190 144 1666.60 1802.66 8.16% 
pr09 3 6 450 180 216 2153.10 2370.79 10.11% 
prlO 4 6 425 170 288 2921.85 3159.48 8.13% 

Average 1898.82 2044.04 7.65% 

As seen in Table 14, JTS does an admirable job on these MD VRPs coming 

within 10% or better of the best known solution across all ten problem instances. 

In addition, Cordeau et al (1997) compile benchmark problems from the literature 

and achieve new best known solutions to all but two of them. Table 15 compares the 
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distances found by JTS to the best known solutions. Problems 1 through 7 are found in 

Christofides and Eilon (1969). Problems 8 through 11 are found in Gillett and Johnson 

(1976). Problems 12 through 23 are found in Chao et al (1993). 

Table 15 - Comparison on MD VRPs from Literature 

Number Number JTS 
Problem of of Route Vehicle Number of Best Known Best Percent 
Number Vehicles Depots Length Capacity Customers Distance Distance Difference 

pOl 4 4 infinite 80 50 576.87 601.70 4.30% 
p02 2 4 infinite 160 50 473.53 495.00 4.53% 
P03 3 5 infinite 140 75 641.19 685.99 6.99% 
p04 8 2 infinite 100 100 1001.59 1074.83 7.31% 
p05 5 2 infinite 200 100 750.03 811.52 8.20% 
p06 6 3 infinite 100 100 876.50 927.01 5.76% 
p07 4 4 infinite 100 100 885.80 994.40 12.26% 
P08 14 2 310 500 249 4437.68 4723.49 6.44% 
p09 12 3 310 500 249 3900.22 4287.41 9.93% 
plO 8 4 310 500 249 3663.02 4242.42 15.82% 
pll 6 5 310 500 249 3554.18 4129.99 16.20% 
pl2 5 2 infinite 60 80 1318.95 1453.82 10.23% 
pl3 5 2 200 60 80 1318.95 1357.48 2.92% 
pl4 5 2 180 60 80 1360.12 1365.68 0.41% 
pl5 5 4 infinite 60 160 2505.42 2741.75 9.43% 
pl6 5 4 200 60 160 2572.23 2658.05 3.34% 
pl7 5 4 180 60 160 2709.09 2731.36 0.82% 
pl8 5 6 infinite 60 240 3702.85 4371.05 18.05% 
pl9 5 6 200 60 240 3827.06 3951.66 3.26% 
p20 5 6 180 60 240 4058.07 4097.04 0.96% 
p21 5 9 infinite 60 360 5474.84 6486.66 18.48% 
P22 5 9 200 60 360 5702.16 6014.87 5.48% 
P23 5 9 180 60 360 6095.46 6145.56 0.82% 

Average 2669.82 2884.73 8.05% 

JTS achieves solutions within 10% of the best known in a short amount of time. 

For JTS, the average CPU time to find the best solution is 74.4 seconds and the average 

total solve time is 170.3 seconds on a Pentium JJ 400 MHz processor. 

For problems 12 through 23, there is a clear pattern for the performance of JTS. 

As the vehicle capacity gets smaller, the quality of the JTS solution improves. Since JTS 

maintains feasibility throughout the algorithm, we hypothesize that the performance of 
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JTS is improved on problems with a smaller feasible solution space, i.e. tightly 

constrained problems. 

4.9 Conclusions 

Our JTS algorithm provides quick, feasible, high-quality solutions. The algorithm 

handles many additional factors, such as, multiple depots, multiple heterogeneous 

vehicles, time windows, time walls, and priorities. These factors combined with the 

multiple parameter sets for solution generation make JTS a robust algorithm capable of 

solving many variations of the vehicle routing problem. 

JTS does not seriously challenge the best known solutions for the Solomon or 

MDVRP benchmark problems. However, the results achieved by JTS are within 10% of 

the best known solutions and the solution time is significantly shorter. We recognize that 

we have not modeled the UAV problem with 100% accuracy. However, in practical 

UAV applications, solution speed is the most important attribute of the solution 

algorithm. Therefore, it is not cost-effective to spend excess time searching for a 99% 

solution to the model when it is quite likely that the 90% solution will suffice. 

A 99% solution is probably not achievable by the JTS algorithm. Even when all 

jump points are explored, the solutions are only improved by approximately 2%. The 

algorithm finds the good quality 90% solutions quickly, but likely converges too quickly 

to achieve the remaining 10%. Additional diversification strategies are likely needed to 

achieve the additional solution quality improvement. 
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Chapter 5. Recommendations for Further Research 

5.1 Modeling UAV Realism 

Weather conditions have a significant impact upon UAV missions. This is the 

main area in which the algorithm needs to be improved. The JTS algorithm incorporates 

penalty factors for each segment. Weather data can be brought into the algorithm, 

processed and represented using these penalties. The algorithm would then consider 

weather factors in building solutions. 

Terrain can also impact UAV missions. Terrain features can be incorporated into 

the algorithm in the same manner as weather. The speed of the algorithm must be kept in 

mind when adding these factors. 

5.2 Tour Construction 

The best direction for improving the tour construction portion of the algorithm 

would be to produce a more diverse set of jump points. Even when all of the jump points 

are explored, the algorithm does not challenge the best known solutions for the Solomon 

or MDVRP benchmark problems. 

This improvement is likely to come from new construction heuristics or new 

parameter values. Of the two, new construction heuristics seem more promising. The 

genetic sectoring algorithm developed by Thangiah et al (1994) in combination with the 

Solomon heuristic could prove very effective. 
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5.3 Search Techniques 

Another direction in which the algorithm may be improved is with more advanced 

local search techniques. There are many advanced tabu and local search techniques 

proposed by Shaw (1997) and Taillard et al (1997) that may improve the solution quality. 

When making these improvements, the needs of the eventual user of the algorithm 

must be considered.   Do they require a 90% solution in a very short amount of time or 

can they wait longer for a potentially better solution? 

5.4 Extensions to VRP 

Our algorithm models many VRP factors such as heterogeneous vehicles. 

However, we do not 'take advantage' of heterogeneous vehicles mainly because it is 

unclear how to best utilize a heterogeneous vehicle fleet. Is it more efficient to use larger 

vehicles before smaller ones, faster ones before slower ones? Much research remains in 

this area. 
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