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Extracting black hole physics from the lattice

Simon Catterall

Department of Physics, Syracuse University, Syracuse, NY13244, USA
smc@physics.syr.edu

Toby Wiseman

Theoretical Physics Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK
t.wiseman@imperial.ac.uk

Abstract: We perform lattice simulations of N D0-branes at finite temperature in the
decoupling limit, namely 16 supercharge SU(N) Yang-Mills quantum mechanics in the ’t
Hooft limit. At low temperature this theory is conjectured to be dual to certain supergravity
black holes. We emphasize that the existence of a non-compact moduli space renders the
partition function of the quantum mechanics theory divergent, and we perform one loop
calculations that demonstrate this explicitly. In consequence we use a scalar mass term to
regulate this divergence and argue that the dual black hole thermodynamics may be recovered
in the appropriate large N limit as the regulator is removed. We report on simulations for N
up to 5 including the Pfaffian phase, and N up to 12 in the phase quenched approximation.
Interestingly, in the former case, where we may calculate this potentially difficult phase, we
find that it appears to play little role dynamically over the temperature range tested, which
is certainly encouraging for future simulations of this theory.
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1. Introduction

There are currently various claimed perturbatively renormalizable completions of gravita-
tional theories, including perturbative closed strings, N = 8 supergravity [1] and Horava’s
recent gravity proposal [2]. Whilst attaining such finite or renormalizable behaviour is a
crucial step, given any such theory one would further like to explore the fascinating non-
perturbative gravitational phenomena that are believed to exist from semiclassical reasoning.
In the context of string theory, D-branes provide powerful insights into non-perturbative
quantum gravity as in certain contexts these objects are thought to have two equivalent de-
scriptions; that given by closed strings which lead to a gravitational theory, and that of open
strings which yield a non-gravitational theory. Specifically Maldacena’s duality conjectures
that a large number N of coincident Dp-branes in the ‘decoupling’ limit [3, 4] is described
by closed strings close to a near extremal charged black hole carrying D-brane charge and
tension, and in the open string picture by a (p+1)-dimensional strongly coupled maximally su-
persymmetric SU(N) Yang-Mills theory, taken in the ’t Hooft limit. Whilst the closed string
or gravitational description is problematic to quantize using perturbation theory, since the
open description is non-gravitational, its quantization is, at least in principle, well understood
using conventional field theory methods.
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Such dualities remain conjectural, although the weight of evidence supporting them is by
now convincing. However relatively little concrete information has emerged about the non-
perturbative nature of the dual quantum gravity, essentially because this appears to require
solution of the strongly coupled field theory. Unfortunately there has been little progress
analytically beyond the planar limit which cannot capture the interesting non-perturbative
gravitational physics. The notable exception to this is the case of D1-D5 branes where the
entropy may be deduced by computing an index which may be calculated by deforming the
theory to weak coupling [5, 6]. However the use of indexes has unfortunately so far not been
useful for computing non-perturbative phenomena in the context of D3 branes [7].

Thus it appears that we may have to take numerical approaches or consider new analytic
approximation schemes, such as the Gaussian approximation of Kabat, Lifschytz and Lowe
[8, 9], to solve these theories if we hope to directly extract information about quantum gravity.
A natural context to start with is to consider the finite temperature theory, so that the dual
gravity in appropriate limits describes the full quantum behaviour of black holes. A first step
that is the subject of this paper is to extract the crudest information possible, the thermody-
namics of the theory, which presumably should yield the dual Bekenstein-Hawking entropy.
We will address this in the most amenable numerical context for the holographic correspon-
dence, the case of D0 branes, and will attempt to simulate the thermal partition function
using lattice methods. Here the open string description is the 16 supercharge Yang-Mills
quantum mechanics (the ‘BFSS model’ [10]). This model is particularly tractable for several
reasons the most important of which is that the theory is not only super-renormalizable, but
is also finite in the continuum limit when regulated on the lattice. Thus the usual problems of
fine tuning can be avoided and there is no necessity to utilize the more exotic supersymmetric
lattice constructions described in [11].

Numerical simulation of this theory at finite temperature has been recently performed
on the lattice [12] and using a Fourier cut-off[13, 14, 15, 16].1 However these works ignored
an important physical point, namely that the thermal partition function is actually divergent
due to the exact quantum moduli space enjoyed by D0 branes, as first observed by Kabat,
Lifschytz and Lowe [8, 9]. This divergence is associated with the regions of field space where
the classical moduli become well separated, and depending on the temperature probed, such
divergences may be hard to see in a Monte Carlo simulation.

In this paper we use 1-loop methods to examine the divergence in the continuum theory
and claim that it exists at for any N and any temperature. We propose regulating the
divergence with a mass for the scalar fields in the theory, and argue how to recover the
relevant dual gravitational physics as the regulator is removed. We then perform lattice
simulations with the mass regulator, and explicitly demonstrate this procedure. We pay
particular attention to the potentially problematic Pfaffian phase – the ‘sign problem’ – that
arises in our simulations (and indeed in any 16-supercharge Euclidean Yang-Mills simulations),
and find that in the thermal theory the phase fluctauations are fortunately rather small over

1See also related zero temperature numerical works [17, 18, 19] in this and related theories.
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the temperature range probed.

2. Brief review of duality with black holes

Following Itzhaki et al [4], we consider the “decoupling” limit of N coincident D0-branes.
We take N large with Ngs fixed, where gs is the string coupling. The decoupling limit is
then defined by considering excitations of these D0-branes with fixed energy while sending
the string length scale to zero so α′ → 0. In this limit the degrees of freedom of the system
split up into those localized near the branes - the ‘near horizon’ excitations - and those living
far from the brane which we are not interested in here.

There are two descriptions of the degrees of freedom living near the branes in the decou-
pling limit. The first, the open string description, arises from the open string worldvolume
theory of the D0-branes whose degrees of freedom are the open strings ending on the branes.
In the limit of fixed energy excitations as ls → 0, the dynamics is governed by 16 supercharge
SU(N) Yang-Mills quantum mechanics with gauge coupling g2

YM = gsα
′−3/2/(2π)2. Explic-

itly this theory arises from dimensional reduction of N = 1 super Yang-Mills in 10-d. The
10-d gauge field reduces to the 1-d gauge field A and 9 scalars, Xi, i = 1, . . . , 9 and the 10-d
Majorana-Weyl fermion to 16 single component fermions, Ψα, α = 1, . . . , 16. The action is
given as,

S =
N

λ
tr
∫
dt

{
1
2

(DtXi)2 − 1
4

[Xi, Xj ]
2 + Ψγt

(
γtDt − γi [Xi, ·]

)
Ψ
}

(2.1)

where γt, γi are the real Majorana-Weyl gamma matrices.
The second description is the closed string one, namely IIA closed strings propagating

in the near horizon geometry of N D0-branes. When supergravity is valid we may write the
vacuum near horizon geometry as,

ds2 = α′

(
U

7
2

2π
√
bλ

(−dt2) + 2π
√
bλ
(
U−

7
2dU2 + U−

3
2dΩ2

))

eφ = (2π)2g2
YM

(
U7

4π2bλ

)− 3
4

(2.2)

where b = 240π5, with λ = Ng2
YM and the coordinate U can now be interpreted as an

energy scale. Closed string excitations may be added to this and then the geometry is simply
asymptotic (as U → ∞) to this. It is crucial that all curvatures and the string coupling eφ

are small in order that the above supergravity solution is valid. The curvature radius ρ at
energy scale U is characterized by the radius of the sphere in the above geometry, so that in
string units,

ρ

α′1/2
∼
(
λ

U3

)1/4

(2.3)
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and the dilaton at the radius U is,

eφ ∼ 1
N

(
λ

U3

) 7
4

(2.4)

Hence we see that provided λ/U3 and N are large the supergravity solution above is a good
approximation. In particular the dilaton condition shows we must take the ’t Hooft limit,
first taking N to infinity with λ/U3 fixed, and subsequently taking this ratio large. Moving
to energies where U3/λ ∼ 1, curvature corrections become important. At ultra low energies,
U3/λ ∼ N−4/7, outside the ’t Hooft scaling limit, the dilaton blows up and the string theory
becomes strongly coupled. In conclusion the closed string description in vacuum reduces to
the above supergravity solution above in the approximate range N−4/7 < U3/λ < 1.

At finite temperature the relevant near horizon geometry in the supergravity approxima-
tion is a black hole,

ds2 = α′

(
U

7
2

2π
√
bλ

(−fdt2) + 2π
√
bλ

(
U−

7
2
dU2

f
+ U−

3
2dΩ2

))

f(U) = 1− U0

U
(2.5)

and the horizon is located at U = U0, with U0 parametrically giving the thermal energy scale.
In this decoupling limit the energy above extremality, E, and temperature T become,

ε = E/λ1/3 = N2 8
7(2π)b

(
U0/λ

1/3
)7
, t = T/λ1/3 =

7
8π2
√
b

(
U0/λ

1/3
)5/2

(2.6)

where we have defined the natural dimensionless energy and temperature variables ε and
t. Again we can only trust this solution where string loop and curvature corrections are
small. Choosing the thermal scale to be U3

0 /λ ∼ O(1) so t remains non-zero and finite as we
take N to infinity hides the region of the geometry where the dilaton becomes large behind
the horizon. For small values of U3

0 /λ << 1, so t << 1, then the range of the geometry
U3

0 /λ ≤ U3/λ < 1 is well described by supergravity while for larger U curvature corrections
contribute. We may then reliably compute the entropy as a function of temperature since
the entropy depends only on the near horizon geometry. This yields a prediction for the
thermodynamic behaviour,

ε = c N2t14/5 c =
(

22131252

719
π14

)1/5

' 7.41. (2.7)

valid for t << 1 but finite in the large N limit. Interestingly the recent work of Smilga [20]
may provide an argument for the origin of this power law dependence on t. If we move to
higher temperatures we reach the Horowitz-Polchinski correspondence point [21] at t ∼ 1
where the supergravity breaks down even at the horizon due to curvature corrections. Note
however that in principle a closed string description still exists, although we have little control
over it.
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For ultra low temperatures outside the ’t Hooft scaling limit, t << 1/N−10/21, the dilaton
becomes large near the horizon so that the supergravity description breaks down. However,
the strongly coupled IIA theory may be lifted to M-theory where one finds 11-d supergravity
is valid and thermodynamic predictions can be made [4]. However we will not be concerned
with this M-theory limit here.

3. Divergence of the thermal partition function

The results of Paban, Sethi and Stern indicate that the Lorentzian 16 supercharge quantum
mechanics possesses an exact quantum moduli space [22], given by the space of commuting
scalar and fermion fields. These may always be simultaneously diagonalized by a gauge
transformation and then the bosonic moduli space is parameterized by the N − 1 diagonal
entries of the 9 scalars, which can be thought of as giving the moduli space of N − 1 identical
particles which describes the D0-branes minus their centre of mass motion. Paban, Sethi and
Stern constructed the effective action for one of these particles when it is far separated from the
others and showed that supersymmetry constrained the form of this action to have vanishing
potential when the particle is stationary, which is maintained under adding corrections due to
the other particle interactions. Another reflection of this result is the work of de Wit, Lüscher
and Nicolai [23] who showed that the theory possesses a continuum of states extending down
to zero energy.

Given that the quantum mechanics has an exact non-compact quantum moduli space
and a corresponding continuum of states extending to zero energy, it follows that the thermal
partition function for N D0-branes is likely ill-defined at low temperatures due to the infra-red
divergence associated to the integral over this moduli space. As far as we are aware, Kabat,
Lifshitz and Lowe [8, 9] provide the first statement in the literature that the thermodynamic
partition function suffers from such a divergence. An important point is that while the thermal
path integral is divergent, the Euclidean path integral with periodic boundary conditions for
the fermions, should be well defined, giving the Witten index. Since one might naively imagine
that the low temperature thermal behaviour would resemble the periodic Euclidean theory
for large Euclidean time radius, we see that the existence of a divergence in the thermal case,
but not in the periodic case, implies the divergence is a somewhat subtle effect.

At low temperature, the continuous spectrum down to zero energy might suggest a di-
vergence – although of course it is possible to have a continuum of states and not have a
divergence. However, it is less clear that this persists to higher temperatures. Kabat, Lifshitz
and Lowe stated such a divergence exists in the t ∼ O(1) temperature range although they did
not consider it in detail as the Gaussian approximation they employed elegantly sidesteps the
issue. We are unaware of any detailed discussion in the literature concerning this divergence,
which seems somewhat surprising given its importance for the thermodynamics of this max-
imally supersymmetric YM quantum mechanics, or indeed the Yang-Mills theory associated
with Dp-branes on a torus which one assumes would suffer the same instabilities for the same
reasons.
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The physics of the divergence is presumably understood in terms of Hawking evaporation
of D0-branes from the black hole, since it is clearly associated with the non-compact moduli
space of the branes.2 We have little to say about this closed string interpretation, although
it certainly appears interesting, and it would be intriguing to see if it could be calculated
in the closed string picture, although as it involves thermal radiation of D0-branes, it could
presumably not be seen at the level of supergravity itself.

The aim of the rest of this section is to use the 1-loop approximation to study the thermal
dynamics of the model and show that an IR divergence should indeed be expected to arise.
A simple 1-loop argument was given by Anagnostopoulos et al [13] that nicely illustrates the
nature of the divergence. We extend this argument by performing a detailed 1-loop calculation
for the bosonic version of the theory, and in particular compute the first non-trivial quantum
contributions to the classical moduli space from all fluctuations about the moduli (rather than
just the ‘off-diagonal’ fluctuations as in previous 1-loop calculations [24] used in the argument
of [13]). We use the structure of this bosonic result to argue that in the supersymmetric case
a divergence exists.

Following the 1-loop argument in [13] of an infrared instability, it was claimed that in
the Monte Carlo simulation the instability was seen at low temperature but eliminated by
increasing N . Here we wish to emphasize that the instability is intrinsic to the continuum
theory at all temperature and N , and must be seen in the Monte Carlo (if one can run the
simulation long enough). It is therefore important to regulate this divergence on the lattice
carefully.

3.1 The matrix integral truncation: classical moduli and the 1-loop approxima-
tion

In this section we will outline the nature of the 1-loop approximation in the context of a simpler
model namely bosonic Yang-Mills matrix theory. This model arises by compactification of
the thermal quantum mechanics model to zero dimensions. In the bosonic sector the starting
Euclidean action is simply given as,

S =
N

λ
tr
∮ R

dτ

{
1
2

(DτXi)2 − 1
4

[Xi, Xj ]
2

}
(3.1)

where R is the length of the periodic Euclidean time τ , and gives the temperature T as
T = 1/R. Taking the fields to be constant in time, A(τ) = X̃0, Xi(τ) = X̃i yields the
Yang-Mills matrix integral,

S = −NR
4λ

tr
{[
X̃µ, X̃ν

]2
}

(3.2)

which having no coupling constant (the factor R/λ appearing can simply be absorbed by
a rescaling of the fields) is obviously strongly coupled. This matrix integral has a classical

2We note that our interpretation differs from that of [8, 9] where the effect is stated to be dual to thermal

gravitons.
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moduli space of commuting matrices, which lift to the classical moduli of our full quantum
mechanics which are given by commuting bosonic matrix fields which are constant in time.
Whilst the full dynamics of this matrix integral is strong coupled there is a regime where the
dynamics is weakly coupled and may be studied by using the 1-loop technique [25, 26, 27].

By a choice of gauge we may choose the vacuum configuration to be given by a set of
diagonal matrices. We decompose a Hermitian matrix into its diagonal and off-diagonal parts,
using the notation Z = z+ Ẑ where z is diagonal and Ẑ off diagonal. We expand the matrices
about such a diagonal configuration,

X̃µ = xµ + X̂µ (3.3)

where the classical bosonic moduli are the diagonal components of xµ which we denote xaµ. A
classical solution is then some choice of xµ and zero off-diagonal modes X̂µ = 0. Then with
the notation that ∆xabµ = xaµ − xbµ and |∆xab|2 =

∑
µ(∆xabµ )2, the action becomes,

S =
NR

λ

(∑
a<b

(X̂µ)∗ab
(
δµν |∆xab|2 −∆xabµ ∆xabν

)
(X̂ν)ab

−tr
(

[xµ, X̂ν ][X̂µ, X̂ν ] +
1
4

[X̂µ, X̂ν ]2
))

(3.4)

where we (X̂µ)ab = (X̂µ)∗ba as they are Hermitian.
We may think of the off-diagonal matrix X̂µ as being composed of the degrees of freedom

of the N(N − 1)/2 complex scalars (X̂µ)ab with a < b, with the first term above giving
their quadratic action, while the latter two terms give their interactions. We see that the
off-diagonal modes, (X̂µ)ab, gain a mass |∆xab| from the classical moduli.3 If this mass is very
large, we may use the 1-loop approximation to the system by taking the diagonal fields as
slow degrees of freedom, and the off-diagonal fields as fast degrees of freedom. Let us rescale
the fields as follows;

xaµ = Λφaµ

(X̂µ)ab =
1
Λ

√
λ

R
(Φ̂µ)ab . (3.5)

where Λ is a mass scale. Now the classical moduli fields φaµ and the off diagonal modes (Φ̂µ)ab
are dimensionless. Consider giving values to the classical moduli so that φaµ ∼ O(1). Then
the mass scale Λ sets the mass for the off-diagonal modes. We find their action to be,

S = N

(∑
a<b

(Φ̂µ)∗ab
(
δµν |∆φab|2 −∆φabµ ∆φabν

)
(Φ̂ν)ab (3.6)

− tr
(
g[φµ, Φ̂ν ][Φ̂µ, Φ̂ν ] +

1
4
g2[Φ̂µ, Φ̂ν ]2

))
(3.7)

3We see from the Greek index structure that there also is a zero mass fluctution of the X̂µ due to the gauge

not being fixed here which we treat in detail in Appendix A.
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with dimensionless coupling, g = λ/(RΛ4). Thus for a given coupling λ and temperature
1/R, provided we choose the mass scale Λ to be large enough,

Λ >>

(
λ

R

)1/4

(3.8)

so that g << 1, we may integrate out the off diagonal modes in the 1-loop approximation.
This yields an effective theory for the classical moduli φaµ = 1

Λx
a
µ. Whereas classically

there is no potential for these moduli fields, in the case of this matrix integral, these massive
off diagonal modes generate a 1-loop potential. As we have seen, we may trust this 1-loop
potential when the moduli have values, |xaµ| >>

(
λ
R

)1/4
so that the mode separations,

R|∆xab| >>
(
λR3

)1/4 (3.9)

and therefore the masses generated for the off diagonal modes, which go as |∆xab|2, are
sufficiently large. Thus it is in the region where the moduli are well separated that the 1-loop
potential is a good approximation.

The classical moduli space has, in an appropriate gauge, a measure
∫ ∏N−1

a=1

∏9
µ=0 dx

a
µ

where we note that xNµ is determined by the traceless condition on the original matrices Xµ

due to the SU(N) gauge group. We see the classical moduli have infinite volume in their
measure. Without a potential, this would lead to a divergence in the matrix integral from the
region where these modes are well separated. However, it is precisely here that one can trust
the 1-loop calculation above, and one finds the 1-loop potential is attractive, (see eg. [28])

S1−loop ∼
∑
a<b

log(R|∆xab|) (3.10)

and therefore renders the integral over these classical moduli finite. We note that for super-
symmetric matrix integrals, 1-loop calculations again suggest convergence [25, 26, 27], and in
these cases remarkable analytic work has proven the integral to be finite [29, 30].

Thus we see that whilst naively the theory is always strongly coupled, for large diagonal
separations |∆xab| >>

(
λ
R

)1/4
of the matrix fields, the system may then be approximated

by the dynamics of these diagonal modes with corrections from integrating out massive off
diagonal modes.

3.2 1-loop approximation for the quantum mechanics

The 1-loop technique was pioneered by Douglas et al [31] for the supersymmetric quantum
mechanics, and was first used for finite temperature calculation by Ambjorn et al [24] (see
also [28] for generalization to bosonic and higher dimensional theories). Here we will show
how to perform the 1-loop approximation for the bosonic quantum mechanics. We begin by
expanding the matrix fields as,

A(τ) = a

Xi(τ) = xi + yi(τ) + X̂i(τ) (3.11)
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where a, xi, yi(τ) are diagonal matrices, and X̂i are off-diagonal matrices. We also make the
choice that

∮
dτyi(τ) = 0, and a, xi are constant in time. Note that we have made a choice

of gauge so that A(τ) is diagonal and constant in time, which completely fixes the gauge
freedom.

We now think of the decomposition as follows. The constant diagonal modes a, xi are the
classical moduli. Setting the remaining fields to zero, the action for these moduli vanishes. As
above, the off-diagonal and time dependent fields X̂i will again be massive if we give values
to the classical moduli, and these masses are given in terms of the classical moduli separation
|∆xab|2, where now |∆xab|2 =

∑
i(∆x

ab
i )2. The new ingredient is the diagonal, non-constant

modes yi(τ). These modes are interesting as setting the off-diagonal fields to zero, their action
is only quadratic and hence they are not coupled classically to the classical moduli.

The procedure we follow is to firstly give large separations to the classical moduli, and
integrate out the off-diagonal modes at 1-loop, as for the matrix integral above. This generates
a 1-loop potential for the classical moduli a, xi. However, it also generates interaction terms
for the diagonal, non-constant modes yi coupling them to the classical moduli. Since the only
interaction terms for yi are generated from integrating out the massive off diagonal fields, these
interactions are strongly suppressed relative to the classical kinetic terms for yi. Thus we may
now integrate out the diagonal non-constant modes yi also in the 1-loop approximation. The
only interaction terms kept are then those that are quadratic in the yi. These then yield a
second contribution to the potential for the classical moduli. In previous literature (eg. [24])
only the potential contribution from the off-diagonal modes has been computed, and since we
are interested in convergence of the partition function it is important to compute the leading
behaviour of potentials generated from all fluctuations about the moduli as we do here.

We have saved the details of the calculation for Appendix A, and here present the main
results. The action in our gauge is given as,

S =
N

λ

∮ R

dτ

(
1
2

(∂τyai )2 +
1
2

(X̂∗i )abOabij (X̂j)ab +O(X̂3)
)

(3.12)

where,

Oabij =
(
D̂ab
i D̂

ab
j − δij((D̂ab

τ )2 + (D̂ab
k )2)

)
D̂ab
τ = ∂τ + i∆aab , D̂ab

i = i(∆xabi + ∆yabi (τ)) (3.13)

and we have ignored the Fadeev-Popov determinant from the gauge fixing, which is treated in
the Appendix. We see that as before, the classical moduli xai generate masses of order |∆xab|2

for the off diagonal modes (X̂i)ab, and the 1-loop approximation is again valid providing,

R|∆xab| >>
(
λR3

)1/4 (3.14)

as for the matrix integral above. Performing the 1-loop integration we find the action,

S1−loop =
N

2λ

∮ R

dτ(∂τyai )2 + 4
∑
a6=b

log det
(
Oab + εab

)
(3.15)
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where,

Oab = −(∂τ + i∆aab)2 + |∆xab|2

εab = 2∆xabi ∆yabi (τ) + |∆yab(τ)|2 (3.16)

where the determinant is computed over the time circle τ . This is exactly the analog of the
result obtained for the supersymmetric theory in [24]. Since the masses |∆xab|2 are large, we
may further expand out this determinant, treating the operator εab as a perturbation, giving,

S1−loop =
N

2λ

∮ R

dτ(∂τyai )2 + 4
∑
a6=b

log detOab

+4
∑
a6=b

tr
(

(Oab)−1εab − 1
2

(Oab)−1εab(Oab)−1εab + . . .

)
(3.17)

and we then decompose into Fourier modes,

yi(τ) =
∞∑

m=−∞,m 6=0

yi(m)e
i(2π/R)mτ (3.18)

in order to evaluate the determinants. We find,

S1−loop = V0[a, xi]−
2πN
Rλ

∞∑
m=−∞,m 6=0

m2|yai(m)|
2

−
∑
a6=b

 ∞∑
m=−∞,m 6=0

R

|∆xab|

(
(∆yabi(m))

∗

(
δij −

R2∆xabi ∆xabj
R2|∆xab|2 +m2π2

)
∆yabj(m)

)

+O
[
R2(|∆y|2)∗|∆y|2

|∆x|2

])
(3.19)

where we have defined V0[a, xi] ≡
∑

a6=b log detτOab and are keeping only quadratic terms in
yai . The expansion parameter that controls the size of the quantum correction terms to this
action for yai relative to the quadratic classical kinetic term is λR2/|∆xab|. Thus we may
integrate out the fields yai(m) at 1-loop, ignoring terms that are not quadratic in the yai(m)

provided that,

R|∆xab| >> (λR3)1/2 (3.20)

We emphasize that we have included the quantum corrections to the classical quadratic action
of yai(m) – therefore going beyond the calculation in [24] for the supersymmetric case – as these
include non-trivial interactions with the classical moduli (arising from the previous integration
over the off diagonal modes). These then represent the leading interactions between the
diagonal non-constant modes and the classical moduli in the limit of large moduli separation.
Finally performing the quadratic integral over yi, we obtain,

S1−loop = V0[a, xi] + V1[a, xi] (3.21)
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where the first potential is derived from integration over the off-diagonal modes, and the
second, from the subsequent integral over the diagonal non-constant modes. The conditions
(3.14) and (3.20) for the two 1-loop integrals require,

R|∆xab| >> max((λR3)1/2,
(
λR3

)1/4) (3.22)

which we may always satisfy for any R, λ by simply taking large enough classical moduli
separation. When the dimensionless temperature t = 1/(Rλ1/3) is small our approximation
is valid for R|∆xab| >> 1/t1/2 and at high temperature we require, R|∆xab| >> 1/t1/4.

For simplicity, we will give the behaviour of the potentials V0, V1 only for separations
R|∆xab| >> 1 as that is all we require here to consider convergence of the partition function.
We note however that at high dimensionless temperature, actually our 1-loop approximation
is good for R|∆xab| < 1 and thus in principle we might have given V0, V1 for any separation.
In this limit R|∆xab| >> 1, as shown in Appendix A, the potentials are given as,

V0[a, xi] ' 8
∑
a<b

(R|∆xab|) + . . .

V1[a, xi] '
32
3
λR3

∑
a<b

1
(R|∆xab|)

+ . . . (3.23)

where in the latter case we have taken care to ensure that
∑

a y
a
i(m) = 0 when integrating over

the fields yai(m) to enforce the traceless condition on the matrix fields Xi due to the gauge
group being SU(N).

Now consider adding fermions to the theory. With periodic boundary conditions for the
fermions, we have both bosonic and fermionic classical moduli, being the constant diagonal
boson and fermion degrees of freedom. At 1-loop the integration over off diagonal modes and
non constant modes yields equal and opposite contributions from boson and fermion sectors
and the effective potential vanishes. However for thermal boundary conditions, there are no
fermion zero modes, and the bosonic and fermion fluctuations about the bosonic classical
moduli will not exactly cancel (due to the anti periodicity of the fermions). Thus we expect
again a 1-loop action,

Ssusy1−loop = V ′0 [a, xi] + V ′1 [a, xi] (3.24)

where V ′0 arises directly from integration over the bosonic and fermionic off diagonal modes,
and V ′1 from subsequent integration over the diagonal non-constant fluctuations.

As we have seen above, already in the bosonic theory the contribution from the diagonal
non-constant modes vanishes at large moduli separations. Thus in the supersymmetric theory,
where we expect |V ′1 | < |V1| due to boson/fermion cancellations we again will have a vanishing
contribution at large separation. The important part of the potential is therefore V ′0 , which
can be explicitly evaluated giving,

V ′0 [a, xi] = −32
∑
a<b

e−R|∆x
ab| cos (R∆aab) (3.25)
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in the large separation limit, R|∆xab| >> 1. Thus both V ′0 and V ′1 vanish at large classical
moduli separation, the former exponentially, and the latter at least as fast as an inverse power
in the separation. This means that the integration over the classical moduli space will yield
a divergence arising from the region of the integral associated with widely separated moduli.

That V ′0 vanishes in the large moduli separation limit was the nice observation of [13] that
led them to propose this gives rise to an instability. However, it is important to understand
the nature of the leading corrections V ′1 , as we have done here, as these could have given rise
to a potential that could dominate V ′0 and lead to convergence.

It is an interesting fact that with no fermions the partition function is convergent and
for periodic boundary conditions the partition function is also convergent (giving the Witten
index), while for thermal boundary conditions it appears not to be. In the bosonic case as we
have seen the off-diagonal modes provide a strong potential V0 for the classical moduli which
goes linearly in their separation. For periodic fermions while the potential arising from the
massive modes cancel exactly due to supersymmetry, there are now fermion zero modes which
counteract the potential divergence arising from the bosonic zero mode flat directions.[25, 32]

Since we might expect the thermal theory to resemble the periodic theory at low di-
mensionless temperature t, one might be concerned that the divergence we see from our
thermal calculation is at odds with the fact that the periodic theory is convergent. However
there is no disagreement when we recall that our calculation is only valid for separations
R|∆xab| >> 1/t1/2 for low temperature. Thus, our calculation must break down in the t→ 0
limit, as the region of field space where our approximation is valid is pushed out to infinite
moduli separation. This break down is precisely due to the strong coupling of the diagonal
non-constant modes, which in the supersymmetric case include the fermionic modes that, as
t→ 0, look increasingly like fermionic zero modes.

Naive expectation also suggests that at high temperatures, t >> 1, the fermions in the
thermal theory will have a thermal mass and the theory should resemble the bosonic theory,
which is perfectly convergent. However, we have seen this naive expectation is incorrect, and
that for any finite t there is always a region of field space where the 1-loop approximation
holds and where the potential on the moduli space vanishes asymptotically in separation, fast
enough to yield a divergence.

We now summarize the results of this section. The exact quantum moduli space for the
Lorentzian theory strongly suggests that the finite temperature theory should be IR divergent,
at least at low temperature. We have used 1-loop methods to argue that this divergence should
be present for all finite temperatures.

3.3 Regulating the thermal divergence

As we have seen, we expect the SQM theory to have a thermal divergence associated with
the regions of the classical moduli space of the Euclidean theory where the moduli are well
separated. Schematically if we cut off the classical moduli space so that R|∆xab| < r for some
dimensionless regulator r then from the above we expect the leading large N behaviour of
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the Euclidean free energy to take the form,

I ∼ 9N log r +N2Ifinite(β, r). (3.26)

where upon removing the regulator we see a divergent term from the 9(N − 1) integrals over
the non-compact classical moduli xai . The leading N2 part of the action should yield the
physics dual to the black hole at low temperatures. Since it is this finite part of the action
going as N2 that we are really interested in, once the theory is regulated we may in principle
extract the contribution Ifinite simply by taking N large enough. However, we wish to obtain
Ifinite in the limit of removing the regulator. An important point to note is that as we remove
the regulator, the size of the regulated divergent term becomes larger, and hence in practice
we require larger N in order to extract the leading N2 finite contribution of interest.

In the previous numerical work on this model [13, 12, 15, 14] this divergence was ignored.
In [13] the thermal instability of the simulation was said to be eliminated at low temperature
by increasing N , and in [12] the divergence was claimed to be a lattice artefact. This was
consistent with the numerical data presented in these papers because in practice it may be
difficult to see this divergence, particularly when simulating at large N (where the divergence
is harder to see, and the simulations harder to run). As we have seen, the region of field
space where the theory is strongly coupled is precisely the opposite region to that which
contributes to the divergence, the weakly coupled region where the classical moduli are well
separated. Hence if the lattice Monte Carlo algorithm does not sample this weakly coupled
region efficiently, one may deduce a possibly accurate estimation for the finite O(N2) contri-
bution when N is large. This presumably explains why this previous work found reasonable
thermodynamic curves that look consistent with the predicted black hole thermodynamics at
low temperature. However as we see later, if one runs the lattice simulation long enough then
one must see the divergence. Hence our aim here is to regulate it carefully.

To regulate the theory we introduce a mass for the 9 scalars. We therefore take the
Euclidean action,

S =
N

λ
Tr
∮ R

dτ

{
1
2

(DτXi)2 − 1
4

[Xi, Xj ]
2 +

1
2
µ2X2

i + Ψγτ
(
γtDτ − γi [Xi, ·]

)
Ψ
}
.(3.27)

We note that such scalar masses have been considered in recent lattice simulations of 4
supercharge Yang-Mills in two dimensions to eliminate observed divergences in the scalars
[33, 34, 35, 36].4

The mass gives a quadratic potential for all the components of the matrix scalar fields
Xi which confines them to a region where < X2

i >∼ λ/(Rµ2) or smaller. Thus the classical
moduli will also be confined to a region,

R|∆xab| ∼ 1
t1/2

1
Rµ

(3.28)

4The 1-loop considerations for this theory are similar to those of our maximally supersymmetric quantum

mechanics, and therefore we expect the continuum two dimensional 4 supercharge theory should have a di-

vergent partition function for thermal fermion boundary conditions. The scalar divergences in these lattice

simulations are presumably a manifestation of this.
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and so the mass acts as a regulator with log r ∼ log(Rµ) in equation (3.26). Recall from our 1-
loop arguments above that at low temperatures, for R|∆xab| > 1

t1/2
the diagonal non-constant

modes and off-diagonal modes become weakly coupled, and it is this region that gives rise to
the divergence in the partition function. Thus we may regard the dimensionless m ≡ (Rµ)
as parameterizing the amount of this weakly coupled region allowed by the regulating mass.

Then our procedure is to compute the leading N thermodynamic quantities for small
fixed dimensionless mass m taking N large enough to give the N2 contribution of interest.
Then the dimensionless mass m is reduced and the process repeated. The limit of zero mass
should yield the correct finite N2 contribution.

For this simple regulator unfortunately the subleading N contribution apparently holds
no physical interest. We note that there is another regulator that is more natural to use in
this context, namely the mass term that preserves the full 16 supercharges of the theory where
the quantum mechanics becomes the BMN plane wave matrix model [37]. This mass term
again lifts the non-compact quantum moduli space, rendering the thermal theory convergent.
Now the theory with regulator mass is dual to a known IIA closed string theory. Indeed the
supergravity vacuum solutions dual of this theory with mass term are known [38], although
these are complicated by the fact that the mass term breaks the SO(9) R-symmetry to
SO(3)× SO(6), and correspondingly reduces the isometry of the dual supergravity solutions
in the same manner. So far the thermal supergravity solutions have not been analysed and this
would probably require a numerical treatment as one expects the metrics to be cohomogeneity
two (for example using techniques such as [39]). Thus in principle using this mass term one
would obtain a well behaved thermodynamics and have a good string dual, even though the
supergravity prediction is not yet known. Both the SYM and the gravity calculations are
therefore interesting areas for further study. Unfortunately, just as the temperature must be
small for the supergravity approximation to hold near the black hole horizon, it is likely that
the regulator mass would also have to be taken to be small.

4. Lattice implementation

After integration over the fermions the continuum Euclidean path integral,

Z =
∫
dAdXPf (O) e−Sbos (4.1)

is given by,

Sbos =
N

λ
Tr
∮ R

dτ

{
1
2

(DτXi)2 − 1
4

[Xi, Xj ]
2 +

1
2
µ2X2

i

}
O = γτDτ − γi [Xi, ·] (4.2)

where µ parameterizes the scalar mass that we will use to regulate the thermal divergence.
The γτ , γi are a Euclidean representation of the Lorentzian Majorana-Weyl gamma matrices,
obeying {γµ, γν} = δµν for index ν = {τ, i}. Thermal boundary conditions correspond to
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taking the fermions antiperiodic on the Euclidean time circle and correspond to a temperature
t = λ−1/3/R. The Pfaffian is in general complex [40] giving rise to a potential ‘sign problem’.
It is important in principle to include the phase of the Pfaffian in the Monte-Carlo simulation,
and we discuss this later.

We discretize this continuum model as,

Sbos =
NL3

λR3

L−1∑
a=0

Tr
[

1
2

(D−Xi)a − [Xi,a, Xj,a]2 +
1
2
m2X2

i,a

]

Oab =

(
0 (D−)ab

−(D−)ba 0

)
− γi [Xi,a, ·] Idab (4.3)

where we have rescaled the continuum fields Xi,a and Ψi,α by powers of the lattice spacing a =
R/L where L is the number of lattice points to render them dimensionless. The dimensionless
lattice mass regulator parameter m is related to the continuum mass as m = (Rµ), and as
described above, it is this dimensionless m that parameterizes how much of the weakly coupled
divergent region is allowed by the regulator.

The covariant derivatives are given by (D−W )a = Wi,a − UaWi,a−1U
†
a and we have in-

troduced a Wilson gauge link field Ua. Notice that the fermionic operator is free of doublers
and is manifestly antisymmetric yielding a well defined Pfaffian on the lattice. An important
subtlety is that in order to obtain this antisymmetric fermion operator after finite differencing
we have chosen a twisted Euclidean representation for the Gamma matrices. In particular,

we have taken a representation where, γτ = i

(
0 +Id8

+Id8 0

)
. One may think of the theory

as originating from a classical dimensional reduction of N = 1 SYM in 10-dimensions. One
can integrate out the fermions in 10-dimensional Lorentzian spacetime, continue to Euclidean
time τ = it, and now take the theory to live on a 10-torus. In principle then one would
dimensionally reduce this 10-torus to 1-dimension, τ , by shrinking the spatial cycles to zero
size. However instead our twisted theory is obtained by reducing to 1-dimension where the re-
maining dimension corresponds to one of the space circles. If we had taken periodic boundary
conditions for the fermions on all torus cycles one would expect no difference. However, we
are imposing antiperiodic boundary conditions on one cycle. In principle this should be the
time cycle. However, in our construction, when lifting back to 10-dimensions we have chosen
it to be a space cycle. Thus the theory is physically different in our twisted case from the
conventional untwisted theory. However, since the difference between the theories is only seen
in the fermion boundary conditions, we expect that both the twisted and untwisted theories
share the same supergravity dual, which at leading order in the semiclassical approximation
(ie. large N in the field theory) has no contribution from fermions, beyond the restriction
on the possible manifolds from spin structure. Presumably differences in the twisted and un-
twisted theories therefore show up at subleading order in N , something that we do not study
here, and from the closed string perspective must arise when one considers the backreaction
of the supergravity fermions.
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In a super-renormalizable theory we expect only a finite number of divergences can arise
in our lattice theory. Potentially such divergences may induce a RG flow away from the
maximally supersymmetric continuum limit of interest. However, naive expectation is that
for quantum mechanics, there will be no divergences. When fermions are present this is too
quick a conclusion, as fermion loops arising from a 2-fermion 2-boson interaction or fermion
tadpole loops suffer a superficial divergence on the lattice if kinetic terms do not respect
parity (as in the continuum) [41]. However, as argued in [32], in the Yang-Mills case there
is no 2-fermion 2-boson interaction, and the possible fermion tadpole loop does exist, but
vanishes due to the gauge structure. Thus we expect the lattice action is finite and hence
will flow without fine tuning to the correct maximally supersymmetric continuum theory with
decreasing lattice spacing. In [12] this was tested by simulating the theory with periodic
boundary conditions and testing whether the path integral, in this case the Witten index,
was dependent on R in the continuum limit.

We use the RHMC algorithm [42] to sample configurations using the absolute value of
the Pfaffian. The phase may be re-incorporated in the expectation value of an observable A
by reweighting as < A >=

P
m(Aeiφ)P
m(eiφ) . Here eiφ(O) is the phase of the Pfaffian and the sum

runs over all members of our phase quenched ensemble.

5. Lattice Results

In this section we shall report various properties of the thermal supersymmetric quantum
mechanics discussed above which we have simulated on the lattice over the temperature
range 0.3 < t < 5. We will report on various observables. The mean energy, ε and the
absolute value of the trace of the Polyakov loop, P , are given in terms of our lattice action
above as,

< ε/t > =
3
N2

(
9
2
L(N2 − 1)− < Sbos >

)
P =

1
N
< |Tr

L−1∏
a=0

Ua| > (5.1)

as discussed in [32]. We also compute the Pfaffian phase φ, and the width of the scalar
eigenvalue distributions, W , given in terms of the eigenvalue distribution p(x) of the scalars
Xi, as,

W = β−3/4

∫
dx |x| p(x) (5.2)

The inclusion of 1/N2, 1/N in the above definitions is to ensure these quantities are finite in
the t’Hooft limit for a deconfined phase.

We begin by examining how many lattice points will be required by our lattice approxi-
mation to recover reasonable continuum predictions for the observables we are interested in.
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We will assume that continuum systematic errors are similar to those in the quenched theory.
Since the quenched theory is easy to simulate we may assess these errors. In figure 1 we show
a plot of energy over temperature against temperature for various numbers of lattice points.
We see that already for 5 lattice points the systematic error appears to be small compared
to the statistical uncertainty in the Monte Carlo method. This is true for all observables
discussed in this section, and over the whole temperature range studied.

Hence in the remainder of this section we will largely present results for 5 point lattices.
Whilst in the quenched theory we have the luxury of being able to calculate for larger lattices,
in the unquenched case going beyond 10 lattice points represents a considerable challenge.
Hence it is very encouraging that already interesting information is obtained from 5 points.
However, one must bear in mind that other observables that probe more local properties of the
theory may be more sensitive to continuum systematic error. We leave the very interesting
question of going beyond the crude thermodynamic observables we are examining here to
future work.

Another use for the quenched theory is to assess how quickly the ‘t Hooft scaling sets
in. In the same figure we plot the energy over temperature for N = 5, 12, 30. As for pure
Yang-Mills, we see that the large N scaling sets in quickly, with SU(5) already providing quite
a good approximation to the infinite N extrapolation. For the full theory we will be able to
present data for N up to 12, and for our variables of interest, this is reasonable. However, as
we shall see later, the issue of the thermal divergence means that going to larger N may be
necessary in future work.

We have discussed the claimed IR thermal divergence of the quantum mechanics due to
its exact Lorentzian moduli space. A natural question is how this manifests itself on the
lattice. If the partition function fails to exist, then presumably the Monte Carlo scheme must
also fail in some manner. Choosing an appropriate gauge, the divergence is associated with
the classical flat directions of the potential for the diagonal components of the scalar matrix
fields. The integration over these diagonal modes should give a divergence when the diagonal
values become large and well separated. A gauge invariant observable that is sensitive to
this are the eigenvalues of these scalar matrices. We observe in certain simulations that
the maximum value of the scalar eigenvalues starts to increase in a seemingly unbounded
manner under Monte Carlo iteration time. This appears to be in accord with the Monte
Carlo method beginning to sample the range of field space where the divergence originates
from. Certainly at this point the Monte Carlo procedure can no longer practically provide
statistically independent configurations, and hence the procedure breaks down.

For low temperatures we always observe that the eigenvalues increase unboundedly al-
most immediately the simulation is started. For temperatures t ' 1.0 we observe that the
simulations must be run for many configuration times in order to see the divergence start. In
figure 2 we illustrate this by showing two typical maximum eigenvalue trajectories for 5 point
N = 5 Monte Carlo runs with t = 0.94 and t = 1.12. As is typical for t < 1.0 the eigenvalues
diverge very quickly. For the instance of the larger temperature shown we must run for 600
configurations in order to see the divergence. Presumably the Monte Carlo initially scans the
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Figure 1: Plots of ε/t against t for the quenched theory. The top plot shows SU(5) for various
numbers of lattice points, indicating that the continuum is quickly reached over the temperature
range considered. The bottom plot shows the approach to the ’t Hooft limit, for N = 5, 12, 30 all for
5 lattice points.

strongly coupled region and tunnels out of this to the divergent region, and this becomes less
probable in a given update step as the temperature is increased. For larger t > 1.3 for N = 5
we haven’t seen a divergence in any of our runs starting with initial configurations where
the eigenvalues are tightly clustered, although presumably running for very large numbers of
configurations one would. Thus the observed lattice eigenvalue run away which invalidates
the Monte Carlo scheme appears to be consistent with our formal earlier discussion of the
thermal divergence. We note that, as one would expect, in the quenched theory we see no
such eigenvalue run away behaviour in the lattice simulation. For the periodic theory we also
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saw no eigenvalue divergence [12].
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Figure 2: Plot of the maximum absolute value of the scalar eigenvalues against Monte Carlo configu-
ration number, for N = 5 with 5 lattice points with the top plot having t = 1.12 and the bottom plot
having t = 0.94. These represent typical Monte Carlo sequences and show that for lower temperatures
the divergence quickly sets in, while for higher temperatures it may take many configurations before
the instability is seen, with t ' 1.0 marking the divide in behaviour.

It is interesting that for high temperatures, one may use the Monte Carlo to sample the
strongly coupled region of the partition function for many configurations before one encounters
the divergent region and the Monte Carlo breaks down. This is essentially what allowed the
previous studies [12, 13] to display data for the thermal model without explicitly regulating
the divergence. In figure 3 we use this ‘metastability’ to plot the energy over temperature for
the unregulated theory in the phase quenched approximation. The solid small data points
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are ones where no divergence was encountered during the runs. The open squares are points
where divergences were encountered after a number of configurations, and the data for the
Monte Carlo series is truncated by hand to the region before the divergence. We see that as
N is increased we find the temperature at which the instability appears to set in decreases,
although not substantially. Note however that as N increases the number of configurations
required to obtain the same level of statistical error in a measurement also decreases, and
there one typically is using fewer configurations, so perhaps this is not surprising. We also
plot data for 10 point N = 3, 5, where again we may obtain data for lower temperatures
mainly by virtue of the fact that fewer configurations are required to obtain a given level of
statistical error.

We display these curves for comparison with the previous work [12, 13] and not because
this ad hoc method of truncating Monte Carlo series by hand should be taken seriously as an
algorithm. Still, it is very interesting that the energy curves obtained appear to be consistent
with the low temperature supergravity prediction, also shown in the figures. Thus it appears
naively that the strongly coupled region of the field space where the Monte Carlo sampling
works is indeed responsible for the black hole behaviour, and the field space associated with
the divergence, whilst physically important, appears to have little impact on this black hole
behaviour. It would be very interesting if this could be quantified more precisely

Having now explored the behaviour of the divergence with Monte Carlo simulations and in
particular what happens if we crudely ignore it, in the remainder of the section we shall treat
it properly and regulate it with a scalar mass term. In figure 4 we plot all the eigenvalues
of the scalars against Monte Carlo RHMC time in the mass regulated theory, for masses
m = 0.05, 0.1, 0.5 for a 5 point lattice for N = 12 and a quite small temperature, t = 0.43.
We see that rather than diverging, the eigenvalues now appear bounded, with a core dense
region of approximately the same width for the various m, surrounded by a more diffuse ‘halo’
of eigenvalues who’s extent increases as m decreases ie. as the regulator is removed.

We note that for the low m runs, the motion of the ‘halo’ eigenvalues is very slow in
Monte Carlo time, and hence their dynamics is not correctly treated by our algorithm, where
a configuration is taken for sampling at unit intervals of the RHMC time. However, since it
is the strongly coupled core eigenvalues that give rise to the behaviour of interest, we will not
discuss this concern further here, but merely note that it is clearly a technical issue for future
study to better treat the split of light and heavy degrees of freedom in this system.

With a regulated partition function a key question to address is whether the fluctua-
tions of the Pfaffian phase present an obstacle to a numerical approach. Using the resources
available currently we have only computed this phase for 5 point lattices with N ≤ 5 as the
Pfaffian calculation is very costly computationally. However the results are very encouraging.
In figure 5 we plot the expectation value for the cosine of the Pfaffian phase against temper-
ature for N = 3 and 5 for 5 point lattices for 3 values of the regulator m. It is not surprising
that at high temperature the phase vanishes, and the thermal mass given to the fermions
presumably suppresses the dynamics of the phase. However, initially more surprising is that
at low temperatures we observe that the phase also becomes trivial. This is far less expected.
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Figure 3: Plots of ε/t against t for various N computed without a regulator mass for 5 and 10 lattice
points, but instead artificially truncating the Monte Carlo sequences when the scalar eigenvalues start
to diverge. The open squares denote points where truncation was required, small discs are points
where no divergence was seen for the number of configurations used. We note that for larger N or
more lattice points the error bars are smaller for fewer configurations and hence one may probe to
lower temperatures. Whilst the method is clearly ad hoc and difficult to justify, the results do look
plausibly in agreement with the predicted dual black hole low temperature behaviour, plotted as the
solid blue curve. Configurations are generated in the phase quenched approximation.

Also interesting is that as the regulator mass is decreased, the phase appears to become
closer to zero. We have no reason to expect the value to be trivial in the continuum limit, but
apparently it is rather small over the temperature range probed. One point to note is that
the phase appears closer to zero for N = 3 than N = 5. One might worry that increasing N
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Figure 4: Plot of scalar eigenvalues for SU(12) at t = 0.43 with 5 lattice points as function of
Monte Carlo configuration time for regulator masses m = 0.05 (top), 0.1 (middle) and 0.2 (bottom).
Congurations are generated in the phase quenched approximation.

leads to greater phase fluctuations. Since we have not simulated the phase for greater values
of N we cannot comment concretely on this, suffice to say that since the phase is already
small for N = 5, provided it does not increase by much for larger N , it still would not be
problematic.
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In the remainder of this section we will present results calculated in the phase quenched
approximation, as for N = 8, 12 we haven’t Pfaffian phase data. However we note that for
N = 3, 5, we may re-weight observables by the phase and when we do this for the observables
shown, as one would expect from the results in figure 4, the change in the value of the
observables due to re-weighting is insignificant compared to the statistical error in the results,
and cannot be seen easily by eye.

Having regulated the thermal theory, examined the continuum limit and checked the
effect of the Pfaffian phase, we are ready to show data for observables of physical interest.
In figure 6 we show the energy over temperature plotted against dimensionless temperature
for 3 values of the regulator. In figure 7 we show the trace of the Polyakov loop and scalar
eigenvalue width. Let us now focus on the energy curves. We expect to see a dependence on
the regulator m, and indeed this is evident. For larger m the large N scaling sets in earlier,
as the leading N2 contribution to the energy is picked out from the subleading regulated
divergence more easily. Hence the curves for N = 5, 8, 12 are all rather close. However, of
course it is the large N limit curve for small m that we are actually interested in. We see that
for our smallest m, as expected, one must go to higher N to see the large N scaling. Hence
whilst N = 8, 12 are close, N = 5 is now quite different. Hence as the regulator is further
removed, presumably increasingly large N is required to extract the leading N2 behaviour.

The curves for m = 0.05 give our best data for the theory as the regulator is removed.
We see that the curves appear to interpolate between zero energy at zero temperature and ε

being proportional to t at large t as we expect for quantum mechanics.5 We also see that as N
is increased, and as the regulator is removed, the curves appear to approach the supergravity
low temperature prediction, but the fit is visually still not that good for m = 0.05. This
should be contrasted with the same data for the quenched theory shown in figure 1, where
the energy behaviour is totally different.

6. Summary

In this paper we have taken a more careful look at numerically simulating maximally su-
persymmetric gauged quantum mechanics, the worldvolume theory of N D0-branes at finite
temperature, which is conjectured to be dual to a closed string theory that includes quantum
gravity. In particular for large N and low temperatures, the thermodynamic behaviour of this
quantum mechanics is supposed to reproduce the microscopic entropy of certain supergravity
black holes. Since this theory is strongly coupled in the IR, it seems likely that a numerical
approach is the only way to solve it.

We have emphasized that the exact quantum moduli space of the Lorentzian theory [22]
or corresponding continuum of states down to zero energy [23] appears to render the thermal
partition function divergent. To our knowledge, such a conclusion was first claimed to give a
thermal divergence in [9]. Following earlier work [13] we have used the 1-loop approximation

5We note that for the larger m curves we do not see ε ∼ t as we are actually scaling the regulator mass

with temperature; µ = mR.
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Figure 5: Plot of the average cosine of the Pfaffian phase for N = 3 and 5 for 5 lattice points
for regulator masses m = 0.05 (top), 0.1 (middle) and 0.2 (bottom). We note that at low and high
temperatures the Pfaffian phase appears to play little dynamical role. Its effect appears to increase
as the regulator is removed, and as N is increased, although we always observe it to be rather small.
Reweighting other observables shown in later plots for N = 3, 5 gives no discernable difference from
the phase quenched approximation.

to lend further weight to the claim, arguing that the thermal partition function is divergent
for any temperature and N , and being careful to consider the nature of the leading quantum
corrections to the classical moduli space from all fluctuations. Whilst a thermal potential
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Figure 6: Plots of ε/t verses t for N = 3, 5, 8 and 12, with the regulator mass being m = 0.05 (top),
0.1(middle) and 0.2 (bottom). We observe that for the larger regulator mass the various N produce
similar results, indicating that small N are already close to the large N limiting behaviour. For smaller
regulator mass we observe that larger N are required to find the limiting large N curve, as expected,
as the divergent O(N) part of the action is relatively larger the lower the regulator mass. These results
are calculated in the phase quenched approximation for N = 8, 12 and for N = 3, 5 phase reweighting
makes no discernable difference.

is generated on the bosonic moduli space, the potential is not strong enough to render the
partition function convergent. We believe this divergence is dual to the Hawking evaporation
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Figure 7: Left plots show the Polyakov loop verses t for N = 3, 5, 8 and 12, with the regulator mass
being m = 0.05 (top), 0.1(middle) and 0.2 (bottom). Right plots show the scalar eigenvalue width.

of the D0-branes from the black hole, and the effect is subleading in N to the expected
N2 finite behaviour of the free energy. The instability can be hard to see in Monte Carlo
simulation. Previous simulations of this thermal quantum mechanics saw signals of this
instability but assigned it either to a lattice artefact [12] or to a divergence arising only at
temperatures below T ∼ 1/N [13]. Nonetheless such an instability renders such Monte Carlo
simulations formally ill-defined.

In order to proceed with simulation we add a regulator mass to the scalars, and simulate

– 26 –



the theory. We have argued that since the divergence is subleading in N , we may consider
taking the large N limit to extract the finite behaviour of the free energy which leads in N , and
then remove the regulator. We have performed preliminary simulations where this is done,
and the procedure appears to function as expected. We obtain results that appear roughly
consistent with a low temperature behaviour predicted by a semiclassical black hole analysis
when the regulator is removed, but the quality of the data should be considerably improved
taking larger N and smaller regulator mass in future work to draw any firm conclusions that
test this holographic correspondence.

The ‘sign problem’ that arises from the Pfaffian phase in the thermal theory is potentially
dangerous to Monte Carlo simulation. We have carefully computed it for N = 3, 5, and find
that it is reassuringly small over the interesting range of temperatures simulated. If this had
not been the case, it would have spelt disaster for future simulations of thermal 16 supercharge
Yang-Mills. Thus it is extremely encouraging that this possible difficulty does not appear to
present itself in practice.
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A. Thermal 1-loop calculation

We will consider the quenched model first, and then discuss the theory with the fermions.
We may decompose the fields into diagonal components and off-diagonal ones.

A(τ) = a(τ) + Â(τ)

Xi(τ) = xi(τ) + X̂i(τ) (A.1)

so that a, xi are diagonal and Â, X̂i are off-diagonal. Now we have included the diagonal
Kaluza-Klein modes as the non-constant parts of a(τ) and xi(τ). As discussed in the main text
the classical moduli are the constant diagonal modes, so that a classical vacuum configuration
is defined by Â = 0, X̂i = 0 and a(τ), xi(τ) being constant in time. Then we may write the
action as,

S =
N

λ

∮ R

dτ tr
(

1
2
ẋ2
i +

1
2
X̂µ

(
D̂µD̂ν − 2[D̂µ, D̂ν ]− δµν(D̂α)2

)
X̂ν +O(X̂3)

)
(A.2)

where we have defined,

Φ̂µ = {Â, X̂i}
D̂µ = {∂τ + i[a, ·], i[xi, ·]} (A.3)
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We note that setting the off-diagonal modes to zero yields a trivial massless quadratic theory
for the diagonal degrees of freedom.

Validity of 1-loop integral over off diagonal modes

Let us for a moment consider taking the diagonal modes, a(τ) and xi(τ) to be constant in
time, so that the operators D̂µ commute. We also rescale the off diagonal fields to canonically
normalize their kinetic term,

xai = Λφai

(X̂µ)ab =

√
λ

Λ
(Φ̂µ)ab . (A.4)

and then we may write the action,

S|a,xiconst = N

∮ R

dτ tr

(
1
2

Φ̂µ P̂µν Φ̂ν +

√
λ

2
[Φ̂µ, Φ̂ν ]D̂µΦ̂ν −

λ

4
[Φ̂µ, Φ̂ν ]2

)
(A.5)

where we have written down the interaction terms explicitly, and the operator P̂µν =
(
D̂µD̂ν − δµν(D̂α)2

)
.

Now the Greek index structure of the propagator P̂µν implies that longitudinal modes (ie.
Φµ ∼ D̂µf for some matrix function f) have a vanishing propagator. As usual, this vanishing
of the longitudinal mode is due to the gauge invariance of the theory. The physical modes,
the transverse ones orthogonal to the longitudinal modes, are controlled by the propagator
(D̂α)2. We use the notation that a diagonal matrix h is written in terms of its diagonal
entries, ha, so that hab = haδab, and then, ∆hab = ha − hb. Then the operator (D̂α)2 acting
on the off diagonal fields is given as,[

(D̂α)2Φ̂µ

]
ab

=
(

(∂τ + i∆aab)2 − Λ2|∆φab|2
)

(Φ̂µ)ab (A.6)

where the left hand side denotes the (ab) entry of the matrix function (D̂α)2Φ̂µ and where
|∆φab|2 =

∑
i(∆φ

ab
i )2. We see that this operator is diagonal in color, flavour and momentum

space, and gives a mass Λ|∆φab| to the transverse off diagonal mode (Φ̂µ)ab.
We see from the transverse propagator that the physical off-diagonal modes that are most

strongly coupled are those that are constant in time. Then as in the main text we observe
that a 1-loop integration over the off-diagonal modes, taking |∆φab| ∼ O(1), is controlled by
the same coupling as for the matrix integral, g = λ/(RΛ4). Then setting the mass scale Λ of
the separation of the diagonal components so that,

Λ >>

(
λ

R

)1/4

(A.7)

then we may perform a 1-loop integral over the off diagonal fluctuations. Translating back to
the diagonal variables xai , we require,

R|∆xab| >>
(
λR3

)1/4 (A.8)

so that the off diagonal fields have sufficient mass for the 1-loop approximation to be good.
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Performing 1-loop integation over off-diagonal modes

Now let us return to our action above in equation (A.2) now returning the diagonal fields
a, xi to depend on time. We proceed with the 1-loop integration by fixing a constant diagonal
gauge for the gauge field so that,

a(τ) = a , Â(τ) = 0 (A.9)

with a being constant in time τ . Since a gauge variation, δA = DτΛ about this configuration
yields,

δa(τ) = ∂τλ

δÂ(τ) = (∂τ + i[a, ·])Λ̂ = D̂τ Λ̂ (A.10)

with Λ = λ + Λ̂ then the associated Fadeev-Popov determinant is detdiag ∂τ detoff D̂τ , where
the first determinant is trivial after regulation, and the second is given by,

detoffD̂τ =
∏
a6=b

det(∂τ + i∆aab) (A.11)

In this gauge, we may write the path integral as,

Z =
∫ (

da dxi(τ) dX̂i(τ)
)(

detoffD̂τ

)
e−Sg.f.

Sg.f. =
N

λ

∮ R

dτ tr
(

1
2
ẋ2
i +

1
2
X̂i

(
D̂iD̂j − δij(D̂2

τ + D̂2
k)
)
X̂j +O(X̂4, X̂2D̂X̂)

)
(A.12)

The operator, M̂ij = D̂iD̂j − δij(D̂2
τ + D̂2

k) acting on off-diagonal Hermitian fields has eigen-
value (D̂τ ) once, and (D̂2

τ + D̂2
k) eight times. We decompose the diagonal scalars xi(τ) into a

constant piece, xi, and Kaluza-Klein modes, yi(τ), so,

xi(τ) = xi + yi(τ) ,
∮
dτ yi(τ) = 0 (A.13)

Integrating out the off diagonal modes then yields,

Z =
∫

(da dxi) dyi(τ)e−
N
λ

HR dτ tr( 1
2
ẏ2i )

∏
a6=b

det(D̂2
τ + D̂2

k)

−4

(A.14)

where,

detoff(D̂2
τ + D̂2

k) =
∏
a6=b

det(Oab + εab)

Oab = −(∂τ + i∆aab)2 + |∆xabi |2

εab = 2∆xabi ∆yabi (τ) + |∆yabi (τ)|2 (A.15)
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and we note that the Fadeev-Popov determinant is exactly cancelled by the eigenvalue (D̂τ )
of M̂ij . The remaining determinant, det(D̂2

τ + D̂2
k), represents the effect of integrating over

the physical degrees of freedom of the off diagonal fields. We see from the operator O above
that the constant diagonal scalars, xi, give masses |∆xab|2 to the off-diagonal modes, and the
non-constant diagonal scalars then interact with these via the ε term above.

As discussed above, taking R|∆xab| >>
(
λR3

)1/4 ensures the one loop approximation is
valid. However, taking large |∆xab|2 also implies that the operator O should dominate the
operator ε in the 1-loop determinant above. We may then proceed by expanding out the
determinant above in powers of the operator ε, which then yield an effective potential for
the classical moduli xai and corrections to the classical action of the diagonal, non-constant
modes, yai . Explicitly,

Z =
∫

(da dxi) e−V0[a,xi]

∫
dyi(τ)e−Stree[yi(τ)]−S1−loop[a,xi,yi(τ)] (A.16)

where the potential for the constant modes, V0, and the classical and 1-loop interaction terms
for the diagonal non-constant modes, Stree and S1−loop respectively are given as,

Stree[yi(τ)] =
N

λ

∮ R

dτ tr
(

1
2
ẏ2
i

)
S1−loop[a, xi, yi(τ)] = 4

∑
a6=b

(
tr(O−1

ab εab)−
1
2

tr(O−1
ab εabO

−1
ab εab) +O(ε3)

)
V0[a, xi] = 4

∑
a6=b

log tr(Oab) (A.17)

and we have expanded the 1-loop interaction term to include all quadratic interations on the
Kaluza-Klein fields, yi(τ). We may evaluate these determinants and traces by expanding in
Fourier modes as,

yi(τ) =
∞∑

m=−∞,m 6=0

yi(m)e
i(2π/R)mτ (A.18)

so that,

Stree =
2π2N

Rλ

∑
a

∑
n6=0

n2|yai(n)|
2 (A.19)

and the above operators act in the Fourier space as,

(Oab)(mn) = δmn

((
2πm
R

+ ∆aab
)2

+ |∆xab|2
)

(A.20)

(O−1
ab εab)(mn) =

δmn(
2πm
R + ∆aab

)
+ |∆xab|2

∑
p 6=0

2∆xabi ∆yabi(p)δm−n−p +
∑
q 6=0

∆yabi(p)∆y
ab
i(q)δm−n−p−q
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After a suitable regulation (for example Pauli-Villars [28]) we find,

V0 = 8
∑
a<b

ln
(

coshR|∆xab| − cosR∆Aab
)
. (A.21)

Validity of 1-loop integation over diagonal non-constant modes

The condition for 1-loop integration over the off-diagonal modes is R|∆xab| >> (λR3)1/4.
From the above, we see that we may also consider now performing a loop integral over yai(n).
The most strongly coupled modes are the low momentum modes. For such modes powers of
(O−1ε) contains interaction terms, and for large classical moduli separation R|∆xab| >> 1
each power of yai in such an interaction term is suppressed by a factor of ∼ 1/|∆xab|. Rescaling
the fields yai to obtain a canonical normalization of Stree one then sees that the coupling
controlling this 1-loop integration over the yai is,

R|∆xab| >> (λR3)1/2 (A.22)

As discussed in the main text, the two conditions R|∆xab| >> (λR3)1/4 and R|∆xab| >>
(λR3)1/2 are mutually compatible for all dimensionless temperature t = 1/(λ1/3R) provided
we take sufficiently large R|∆xab|.

Performing 1-loop integation over diagonal non-constant modes

Thus we now perform this 1-loop integral over the diagonal non-constant modes yai . Instead
of performing it in the maximal range R|∆xab| >> max((λR3)1/2, (λR3)1/4), we instead now
focus on the subregion,

R|∆xab| >> 1 (A.23)

within this range, as this allows some simplifications to be made, and as we are really only
interested in the asymptotic behaviour of the remaining potentials at very large R|∆xab|.
Firstly,

V0 ' 8
∑
a<b

(R|∆xab|) (A.24)

Then we may evaluate,

tr(O−1
ab εab) =

∑
p

∑
q 6=0

∆yabi(−q)∆y
ab
i(q)(

2πp
R + ∆aab

)
+ |∆xab|2

' R

2|∆xab|
∑
q 6=0

|∆yabi(q)|
2 (A.25)
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for large R|∆xab| >> 1, and likewise,

tr(O−1
ab εabO

−1
ab εab) =

∑
p

∑
q 6=0

4∆xabi ∆xabj ∆yabi(−q)∆y
ab
j(q)((

2πp
R + ∆aab

)
+ |∆xab|2

)((
2π(p+n)

R + ∆aab
)

+ |∆xab|2
)

' R

|∆xab|
∑
q 6=0

|∆yabi(q)|
2

|∆xab|2 + q2π2

R2

(A.26)

so that,

Stree =
2π2N

Rλ

∑
a

∑
n 6=0

n2|yai(n)|
2

S1−loop ' 2R
∑
a6=b

∑
n6=0

1
|∆xab|

(∆yabi(n))
∗

(
δij −

∆xabi ∆xabj
|∆xab|2 + n2π2

R2

)
(∆yabj(n)) +O

(
(yai )3

)
(A.27)

We see that the main contribution to the 1-loop integration over yai is from the classical action
Stree, but we obtain a small correction from the quadratic terms above in S1−loop. We see
that the correction is indeed small for R|∆xab| >> 1.

In performing this integral, we must take care to recall that
∑

a y
a
i = 0 due to the matrix

fields Xi being traceless for SU(N) gauge group. We split the generator index a = (A,N)
with A = 1, . . . , N − 1, and then change to variables,

ỹAi(n) −
1
N
φi(n) = π

√
2
Rλ

yAi(n)

− 1
N
φi(n) = π

√
2
Rλ

yNi(n) (A.28)

and likewise,

x̃A(n) −
1
N
ψi(n) = RxA(n)

− 1
N
ψ(n) = RxN(n) (A.29)

with φi(n) =
∑N−1

A=1 ỹ
A
i(n) and ψi =

∑N−1
A=1 x̃

A
i . These (N −1) dimensionless variables ỹAi(n) now

preserve tracelessness of the matrices Xi. Changing to these variables gives the quadratic
action for ỹAi(n) to be,

Stree = N
∑
A,B

∑
n6=0

n2(ỹAi(n))
∗ỹBi(n)

(
δAB − 1

N

)

S1−loop = +
λR3

π2

∑
A 6=B

∑
n 6=0

1
|∆x̃AB|

(∆ỹABi(n))
∗

(
δij −

∆x̃ABi ∆x̃ABj
|∆x̃AB|2 + n2π2

)
(∆ỹABj(n))

+
2λR3

π2

∑
A

∑
n6=0

1
|x̃A|

(ỹAi(n))
∗

(
δij −

x̃Ai x̃
A
j

|x̃A|2 + n2π2

)
(ỹAj(n)) (A.30)
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We write the quadratic action Stree + S1−loop as,

Squad = N
∑
n6=0

∑
A,B

∑
ij

(ỹAi(n))
∗
(
O′ABij(n) + ε′ABij(n)

)
ỹBj(n)

O′ABij(n) = n2

(
δAB − 1

N

)
δij

ε′ABij(n) =
2λR3

Nπ2

(
− 1
|x̃AB|

(
δij −

x̃ABi x̃ABj
|x̃AB|2 + n2π2

)

+δAB
[

1
|x̃A|

(
δij −

x̃Ai x̃
A
j

|x̃A|2 + n2π2

)
+
∑
C

1
|x̃AC |

(
δij −

x̃ACi x̃ACj
|x̃AC |2 + n2π2

)])
(A.31)

and then performing the 1-loop integral over ỹAi(n) and expanding in the correction ε′ gives,

Z '
∫

(da dxi) e−V0[a,xi](detO′)−1e−tr((O′)−1ε′) (A.32)

The determinant det(O′) has no moduli dependence and therefore we may neglect it. Com-
puting the trace, we find the result can neatly we written as,

tr
(
(O′)−1ε′

)
=

2λR3

Nπ2

∑
n 6=0

∑
a6=b

1
n2

1
R|∆xab|

9− 1
1 + n2π2

R2|∆xab|2

 (A.33)

in the original variables xai . In the large classical moduli limit, R|∆xab| >> 1, this gives,

tr
(
(O′)−1ε′

)
' 32λR3

3
1
N

∑
a<b

1
R|∆xab|

(A.34)

and yields the result given in (3.23) of section 3.2.
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