2,802 research outputs found
Inducer dynamics full-flow, full-admission hydraulic turbine drive Interim report for tasks 1, 2, and 3
Hydrodynamical and mechanical design layout for two-speed hydraulic turbine inducer, computer simulation of pumping system and test facility performance, and study of demonstration uni
A Spherical Plasma Dynamo Experiment
We propose a plasma experiment to be used to investigate fundamental
properties of astrophysical dynamos. The highly conducting, fast-flowing plasma
will allow experimenters to explore systems with magnetic Reynolds numbers an
order of magnitude larger than those accessible with liquid-metal experiments.
The plasma is confined using a ring-cusp strategy and subject to a toroidal
differentially rotating outer boundary condition. As proof of principle, we
present magnetohydrodynamic simulations of the proposed experiment. When a von
K\'arm\'an-type boundary condition is specified, and the magnetic Reynolds
number is large enough, dynamo action is observed. At different values of the
magnetic Prandtl and Reynolds numbers the simulations demonstrate either
laminar or turbulent dynamo action
Super-Kamiokande 0.07 eV Neutrinos in Cosmology: Hot Dark Matter and the Highest Energy Cosmic Rays
Relic neutrinos with mass in the range indicated by Super-Kamiokande results
if neutrino masses are hierarchial (about 0.07 eV) are many times deemed too
light to be cosmologically relevant. Here we remark that these neutrinos may
significantly contribute to the dark matter of the Universe (with a large
lepton asymmetry ) and that their existence might be revealed by the
spectrum of ultra high energy cosmic rays (maybe even in the absence of a large
).Comment: Talk given at the ``4th International Symposium on Sources and
Detection of Dark Matter in the Universe", February 23-25, 2000, Marina del
Rey, CA (to appear in its proceedings) and at the ``Cosmic Genesis and
Fundamental Physics" workshop, October 28-30, 1999, Sonoma State University,
Santa Rosa, CA. (8 p. 1 fig.
The Emergence of the Modern Universe: Tracing the Cosmic Web
This is the report of the Ultraviolet-Optical Working Group (UVOWG)
commissioned by NASA to study the scientific rationale for new missions in
ultraviolet/optical space astronomy approximately ten years from now, when the
Hubble Space Telescope (HST) is de-orbited. The UVOWG focused on a scientific
theme, The Emergence of the Modern Universe, the period from redshifts z = 3 to
0, occupying over 80% of cosmic time and beginning after the first galaxies,
quasars, and stars emerged into their present form. We considered
high-throughput UV spectroscopy (10-50x throughput of HST/COS) and wide-field
optical imaging (at least 10 arcmin square). The exciting science to be
addressed in the post-HST era includes studies of dark matter and baryons, the
origin and evolution of the elements, and the major construction phase of
galaxies and quasars. Key unanswered questions include: Where is the rest of
the unseen universe? What is the interplay of the dark and luminous universe?
How did the IGM collapse to form the galaxies and clusters? When were galaxies,
clusters, and stellar populations assembled into their current form? What is
the history of star formation and chemical evolution? Are massive black holes a
natural part of most galaxies? A large-aperture UV/O telescope in space
(ST-2010) will provide a major facility in the 21st century for solving these
scientific problems. The UVOWG recommends that the first mission be a 4m
aperture, SIRTF-class mission that focuses on UV spectroscopy and wide-field
imaging. In the coming decade, NASA should investigate the feasibility of an 8m
telescope, by 2010, with deployable optics similar to NGST. No high-throughput
UV/Optical mission will be possible without significant NASA investments in
technology, including UV detectors, gratings, mirrors, and imagers.Comment: Report of UV/O Working Group to NASA, 72 pages, 13 figures, Full
document with postscript figures available at
http://casa.colorado.edu/~uvconf/UVOWG.htm
Completing Natural Inflation
If the inflaton is a pseudo-scalar axion, the axion shift symmetry can
protect the flatness of its potential from too large radiative corrections.
This possibility, known as natural inflation, requires an axion scale which is
greater than the (reduced) Planck scale. It is unclear whether such a high
value is compatible with an effective field theoretical description, and if the
global axionic symmetry survives quantum gravity effects. We propose a
mechanism which provides an effective large axion scale, although the original
one is sub-Planckian. The mechanism is based on the presence of two axions,
with a potential provided by two anomalous gauge groups. The effective large
axion scale is due to an almost exact symmetry between the couplings of the
axions to the anomalous groups. We also comment on a possible implementation in
heterotic string theory.Comment: 9 pages, 1 figur
Evolution of Second-Order Cosmological Perturbations and Non-Gaussianity
We present a second-order gauge-invariant formalism to study the evolution of
curvature perturbations in a Friedmann-Robertson-Walker universe filled by
multiple interacting fluids. We apply such a general formalism to describe the
evolution of the second-order curvature perturbations in the standard
one-single field inflation, in the curvaton and in the inhomogeneous reheating
scenarios for the generation of the cosmological perturbations. Moreover, we
provide the exact expression for the second-order temperature anisotropies on
large scales, including second-order gravitational effects and extend the
well-known formula for the Sachs-Wolfe effect at linear order. Our findings
clarify what is the exact non-linearity parameter f_NL entering in the
determination of higher-order statistics such as the bispectrum of Cosmic
Microwave Background temperature anisotropies. Finally, we compute the level of
non-Gaussianity in each scenario for the creation of cosmological
perturbations.Comment: 14 pages, LaTeX file. Further comments adde
A Hubble Space Telescope Survey of Extended [OIII]5007A Emission in a Far-Infrared Selected Sample of Seyfert Galaxies: Results
We present the results of a Hubble Space Telescope (HST) survey of extended
[OIII] emission in a sample of 60 nearby Seyfert galaxies (22 Seyfert 1's and
38 Seyfert 2's), selected by mostly isotropic properties. The comparison
between the semi major axis size of their [OIII] emitting regions (R_Maj) shows
that Seyfert 1's and Seyfert 2's have similar distributions, which seems to
contradict Unified Model predictions. We discuss possible ways to explain this
result, which could be due either to observational limitations or the models
used for the comparison with our data. We show that Seyfert 1 Narrow Line
Regions (NLR's) are more circular and concentrated than Seyfert 2's, which can
be attributed to foreshortening in the former. We find a good correlation
between the NLR size and luminosity, following the relation R_Maj propto
L([OIII])^0.33, which is flatter than a previous one found for QSO's and
Seyfert 2's. We discuss possible reasons for the different results, and their
implications to photoionization models. We confirm previous results which show
that the [OIII] and radio emission are well aligned, and also find no
correlation between the orientation of the extended [OIII] emission and the
host galaxy major axis. This agrees with results showing that the torus axis
and radio jet are not aligned with the host galaxy rotation axis, indicating
that the orientation of the gas in the torus, and not the spin of the black
hole, determine the orientation of the accretion disk, and consequently the
orientation of the radio jet.Comment: 17 pages including 12 figures, to appear in Ap
Direct measurement of the jet geometry in Seyfert galaxies
We demonstrate that, by combining optical, radio and X-ray observations of a
Seyfert, it is possible to provide a direct measurement of the angle
between the direction of the radio jet and the normal to the plane of the
spiral host galaxy. To do so, we make the assumptions that the inner radio jet
is perpendicular to the X-ray observed inner accretion disk, and that the
observed jet (or the stronger component, if the jet is two-sided) is physically
closer to Earth than the plane of the galaxy. We draw attention to the
possibility of measurement producing a result which is not self-consistent, in
which case for that galaxy, one of the assumptions must fail.Comment: 11 pages, 1 figure, accepted for publication in The Astrophysical
Journal Letter
- …