1,836 research outputs found

    Parametrisation of the orographic enhancement of precipitation and deposition in a long-term, long-range transport model

    No full text
    International audienceOrographic enhancement of wet deposition arising from the 'seeder-feeder' effect is, by necessity, highly parametrised in long-range transport models of acid deposition that are long-term (i.e. annual average) and spatially resolved at tens of kilometres. Here, we describe a mechanistic approach to the incorporation of these mechanisms into such a model. The model formulation required the following: precipitation rate by direction and quantification of the fractions that are orographic and non-orographic; treatment of the fast oxidation of sulfur dioxide in clouds; the directionality of the seeder-feeder process; and a quantitative basis for increasing wet deposition factors to account for the seeder-feeder process. The directionality of non-orographic precipitation was determined from meteorological data at 47 sites across the UK. Orographic precipitation varies on a much finer scale than can be interpolated from measurements, and thus a modelling approach was adopted. The directionality of the seeder-feeder effect was taken from measurements. The enhancement factor of the orographic component of precipitation, assumed to represent feeder-rain, was determined from a review of measurements. Fast oxidation of sulfur dioxide is an observed phenomenon in cap-cloud, but limited in duration. An adjustment was made to the sulfur dioxide oxidation rate in the model in locations where cap-cloud was assumed to be present. The results from the model were compared with UK deposition budgets and enhanced wet deposition maps. The revised parametrisation underestimated the UK wet deposition budgets of oxidised N and S, but spatial patterns of deposition were improved for much of the UK. It was concluded that this was a satisfactory outcome given the constraints of the statistical approach of weighting of deposition at receptors utilising straight line trajectories. The sensitivity of the model to directional constraints of seeder-feeder enhancement was tested and it was concluded that a fairly narrow constraint resulted in similar estimations to a broader one, and the broader constraint was thus adopted as frontal conditions which result in the process arrive from a fairly broad band of directions. When enhancement was allowed to occur from all directions, UK wet deposition of oxidised N and S was increased by 10%. The sensitivity to the enhancement factor on wet deposition was tested and found to be relatively robust. An increase in the enhancement factor from 2 to 6 resulted in increases in UK wet deposition of oxidised N and S of 9 and 6%, respectively.Key words: Atmospheric composition and structure (pollution ? urban and regional) ? Meteorology and atmospheric dynamics (precipitation

    Emission-line Helium Abundances in Highly Obscured Nebulae

    Get PDF
    This paper outlines a way to determine the ICF using only infrared data. We identify four line pairs, [NeIII] 36\micron/[NeII] 12.8\micron, [NeIII]~15.6\micron /[NeII] 12.8\micron, [ArIII] 9\micron/[ArII] 6.9\micron, and [ArIII] 21\micron/[ArII] 6.9\micron, that are sensitive to the He ICF. This happens because the ions cover a wide range of ionization, the line pairs are not sensitive to electron temperature, they have similar critical densities, and are formed within the He+^+/H+^+ region of the nebula. We compute a very wide range of photoionization models appropriate for galactic HII regions. The models cover a wide range of densities, ionization parameters, stellar temperatures, and use continua from four very different stellar atmospheres. The results show that each line pair has a critical intensity ratio above which the He ICF is always small. Below these values the ICF depends very strongly on details of the models for three of the ratios, and so other information would be needed to determine the helium abundance. The [Ar III] 9\micron/[ArII] 6.9\micron ratio can indicate the ICF directly due to the near exact match in the critical densities of the two lines. Finally, continua predicted by the latest generation of stellar atmospheres are sufficiently hard that they routinely produce significantly negative ICFs.Comment: Accepted by PASP. Scheduled for the October 1999 issue. 11 pages, 5 figure

    Nonprofit-public collaborations: understanding governance dynamics

    Get PDF
    As many of the challenges facing society are too complex to be addressed by single organizations working alone, nonprofit organizations are increasingly working in collaboration with public authorities. The governance of nonprofit–public collaborations is important for their effectiveness, yet it remains poorly understood. Drawing on case study research, this article examines and develops an extant conceptual model developed by Takahashi and Smutny that seeks to explain the formation and demise of nonprofit collaborations in terms of “collaborative windows” and the inability to adapt initial governance structures. The research finds that while initial governance structures are an important constraint on development, they can be adapted and changed. It also suggests that the development of collaborations is not only influenced by changes in the collaborative window but also by how key actors in the collaboration respond to important internal tensions

    Are Cattle Surrogate Wildlife? Savanna Plant Community Composition Explained by Total Herbivory more than Herbivore Type

    Get PDF
    The widespread replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: (1) loss or reduction in numbers of individual wildlife species or guilds and (2) addition of livestock to the system. Each can have important implications for plant community dynamics. Yet very few studies have experimentally addressed the individual, combined, and potentially interactive effects of wild vs. domestic herbivore species on herbaceous plant communities within a single system. Additionally, there is little information about whether, and in which contexts, livestock might functionally replace native herbivore wildlife or, alternatively, have fundamentally different effects on plant species composition. The Kenya Long-term Exclosure Experiment, which has been running since 1995, is composed of six treatment combinations of mega-herbivores, mesoherbivore ungulate wildlife, and cattle. We sampled herbaceous vegetation 25 times between 1999 and 2013. We used partial redundancy analysis and linear mixed models to assess effects of herbivore treatments on overall plant community composition and key plant species. Plant communities in the six different herbivore treatments shifted directionally over time and diverged from each other substantially by 2013. Plant community composition was strongly related (R2 = 0.92) to residual plant biomass, a measure of herbivore utilization. Addition of any single herbivore type (cattle, wildlife, or mega-herbivores) caused a shift in plant community composition that was proportional to its removal of plant biomass. These results suggest that overall herbivory pressure, rather than herbivore type or complex interactions among different herbivore types, was the main driver of changes in plant community composition. Individual plant species, however, did respond most strongly to either wild ungulates or cattle. Although these results suggest considerable functional similarity between a suite of native wild herbivores (which included grazers, browsers, and mixed feeders) and cattle (mostly grazers) with respect to understory plant community composition, responses of individual plant species demonstrate that at the plant-population-level impacts of a single livestock species are not functionally identical to those of a diverse group of native herbivores

    Quantifying water requirements of African ungulates through a combination of functional traits

    Get PDF
    Climate and land use change modify surface water availability in African savannas. Surface water is a key resource for both wildlife and livestock and its spatial and temporal distribution is important for understanding the composition of large herbivore assemblages in savannas. Yet, the extent to which ungulate species differ in their water requirements remains poorly quantified. Here, we infer the water requirements of 48 African ungulates by combining six different functional traits related to physiological adaptations to reduce water loss, namely minimum dung moisture, relative dung pellet size, relative surface area of the distal colon, urine osmolality, relative medullary thickness, and evaporation rate. In addition, we investigated how these differences in water requirements relate to differences in dietary water intake. We observed strong correlations between traits related to water loss through dung, urine and evaporation, suggesting that ungulates minimize water loss through multiple pathways simultaneously, which suggests that each trait can thus be used independently to predict water requirements. Furthermore, we found that browsers and grazers had similar water requirements, but browsers are expected to be less dependent on surface water because they acquire more water through their diet. We conclude that these key functional traits are a useful way to determine differences in water requirements and an important tool for predicting changes in herbivore community assembly resulting from changes in surface water availability

    Improving Predictions for Helium Emission Lines

    Get PDF
    We have combined the detailed He I recombination model of Smits with the collisional transitions of Sawey & Berrington in order to produce new accurate helium emissivities that include the effects of collisional excitation from both the 2 (3)S and 2 (1) S levels. We present a grid of emissivities for a range of temperature and densities along with analytical fits and error estimates. Fits accurate to within 1% are given for the emissivities of the brightest lines over a restricted range for estimates of primordial helium abundance. We characterize the analysis uncertainties associated with uncertainties in temperature, density, fitting functions, and input atomic data. We estimate that atomic data uncertainties alone may limit abundance estimates to an accuracy of 1.5%; systematic errors may be greater than this. This analysis uncertainty must be incorporated when attempting to make high accuracy estimates of the helium abundance. For example, in recent determinations of the primordial helium abundance, uncertainties in the input atomic data have been neglected.Comment: ApJ, accepte
    corecore