345 research outputs found

    Individual addressing and state readout of trapped ions utilizing rf- micromotion

    Get PDF
    A new scheme for the individual addressing of ions in a trap is described that does not rely on light beams tightly focused onto only one ion. The scheme utilizes ion micromotion that may be induced in a linear trap by dc offset potentials. Thus coupling an individual ion to the globally applied light fields corresponds to a mere switching of voltages on a suitable set of compensation electrodes. The proposed scheme is especially suitable for miniaturized rf (Paul) traps with typical dimensions of about 20-40 microns.Comment: 3 pages, 5 figure

    Generation of arbitrary two dimensional motional state of a trapped ion

    Full text link
    We present a scheme to generate an arbitrary two-dimensional quantum state of motion of a trapped ion. This proposal is based on a sequence of laser pulses, which are tuned appropriately to control transitions on the sidebands of two modes of vibration. Not more than (M+1)(N+1)(M+1)(N+1) laser pulses are needed to generate a pure state with upper phonon number MM and NN in the xx and yy direction respectively.Comment: to appear in PR

    Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit

    Full text link
    We propose a simple scheme for implementing quantum logic gates with a string of two-level trapped cold ions outside the Lamb-Dicke limit. Two internal states of each ion are used as one computational qubit (CQ) and the collective vibration of ions acts as the information bus, i.e., bus qubit (BQ). Using the quantum dynamics for the laser-ion interaction as described by a generalized Jaynes-Cummings model, we show that quantum entanglement between any one CQ and the BQ can be coherently manipulated by applying classical laser beams. As a result, universal quantum gates, i.e. the one-qubit rotation and two-qubit controlled gates, can be implemented exactly. The required experimental parameters for the implementation, including the Lamb-Dicke (LD) parameter and the durations of the applied laser pulses, are derived. Neither the LD approximation for the laser-ion interaction nor the auxiliary atomic level is needed in the present scheme.Comment: 12 pages, no figures, to appear in Phys. Rev.

    Controllability and universal three-qubit quantum computation with trapped electron states

    Full text link
    We show how to control and perform universal three-qubit quantum computation with trapped electron quantum states. The three qubits are the electron spin, and the first two quantum states of the cyclotron and axial harmonic oscillators. We explicitly show how the universal gates can be performed. As an example of a non-trivial quantum algorithm, we outline the implementation of the Deutsch-Jozsa algorithm in this system.Comment: 4 pages, 1 figure. Typos corrected. The original publication is available at http://www.springerlink.co

    Adiabatic creation of entangled states by a bichromatic field designed from the topology of the dressed eigenenergies

    Get PDF
    Preparation of entangled pairs of coupled two-state systems driven by a bichromatic external field is studied. We use a system of two coupled spin-1/2 that can be translated into a three-state ladder model whose intermediate state represents the entangled state. We show that this entangled state can be prepared in a robust way with appropriate fields. Their frequencies and envelopes are derived from the topological properties of the model.Comment: 10 pages, 9 figure

    Raman cooling and heating of two trapped Ba+ ions

    Get PDF
    We study cooling of the collective vibrational motion of two 138Ba+ ions confined in an electrodynamic trap and irradiated with laser light close to the resonances S_1/2-P_1/2 (493 nm) and P_1/2-D_3/2 (650 nm). The motional state of the ions is monitored by a spatially resolving photo multiplier. Depending on detuning and intensity of the cooling lasers, macroscopically different motional states corresponding to different ion temperatures are observed. We also derive the ions' temperature from detailed analytical calculations of laser cooling taking into account the Zeeman structure of the energy levels involved. The observed motional states perfectly match the calculated temperatures. Significant heating is observed in the vicinity of the dark resonances of the Zeeman-split S_1/2-D_3/2 Raman transitions. Here two-photon processes dominate the interaction between lasers and ions. Parameter regimes of laser light are identified that imply most efficient laser cooling.Comment: 8 pages, 5 figure

    Heating and decoherence suppression using decoupling techniques

    Get PDF
    We study the application of decoupling techniques to the case of a damped vibrational mode of a chain of trapped ions, which can be used as a quantum bus in linear ion trap quantum computers. We show that vibrational heating could be efficiently suppressed using appropriate ``parity kicks''. We also show that vibrational decoherence can be suppressed by this decoupling procedure, even though this is generally more difficult because the rate at which the parity kicks have to applied increases with the effective bath temperature.Comment: 13 pages, 5 figures. Typos corrected, references adde

    Neutral Higgs sector of the next-to-minimal supersymmetric standard model with explicit CP violation

    Get PDF
    The neutral Higgs sector of the next-to-minimal supersymmetric standard model (NMSSM) with explicit CP violation is investigated at the 1-loop level, using the effective potential method; not only the loops involving the third generation of quarks and scalar quarks, but also the loops involving WW boson, charged Higgs boson, and chargino are taken into account. It is found that for some parameter values of the NMSSM the contributions from the WW boson, charged Higgs boson, and chargino loops may modify the masses of the neutral Higgs bosons and the mixings among them significantly, depending on the CP phase. In e+ee^+e^- collisions, the prospects for discovering neutral Higgs bosons are investigated within the context of the NMSSM with explicit CP violation when the dominant component of the lightest neutral Higgs boson is the Higgs singlet field of the NMSSM.Comment: Latex, 23 pages, 6 figure

    Leptogenesis, Yukawa Textures and Weak Basis Invariants

    Get PDF
    We show that a large class of sets of leptonic texture zeros considered in the literature imply the vanishing of certain CP-odd weak-basis invariants. These invariant conditions enable one to recognize a flavour model corresponding to a set of texture zeros, when written in an arbitrary weak-basis where the zeros are not manifest. We also analyse the r\^ ole of texture zeros in allowing for a connection between leptogenesis and low-energy leptonic masses, mixing and CP violation. For some of the textures the variables relevant for leptogenesis can be fully determined in terms of low energy parameters and heavy neutrino masses.Comment: 16 pages, no figures. One reference added, version submitted for publicatio
    corecore