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Abstract

We show that a large class of sets of leptonic texture zeros considered in the literature imply the vanishing of certain CP-odd w
invariants. These invariant conditions enable one to recognize a flavour model corresponding to a set of texture zeros, when written in a
weak-basis where the zeros are not manifest. We also analyse the rôle of texture zeros in allowing for a connection between leptog
low-energy leptonic masses, mixing and CP violation. For some of the textures the variables relevant for leptogenesis can be fully det
terms of low energy parameters and heavy neutrino masses.
 2005 Elsevier B.V.

1. Introduction

The evidence for nonvanishing neutrino masses provides a clear signal of physics beyond the Standard Model (SM), s
SM neutrinos are strictly massless. The simplest extension of the SM which allows for nonvanishing but naturally small
masses consists of the addition of right-handed neutrinos, leading to the seesaw mechanism[1].

In general, the seesaw mechanism framework contains a large number of free parameters, in fact many more than m
quantities at low energies. In the literature, there have been various attempts at reducing the number of seesaw param
by introducing texture zeros and/or by reducing the number of right-handed neutrinos to two. One could be tempted to
bottom-up approach, using the observed pattern of lepton masses and mixing to infer about the appropriate set of tex
Unfortunately this approach is not feasible, since texture zeros are not weak-basis (WB) invariant. This means that a gi
texture zeros which arise in a certain WB may not be present or may appear in different entries in another WB. Indeed, ea
zero ansatz corresponds to an infinite set of leptonic mass matrices, related to each other by WB transformations. Need
two sets of leptonic mass matrices related by a WB transformation contain the same physics. This raises a number of
such as:

(i) How can one recognize a flavour model corresponding to a set of texture zeros, when written in a different WB, w
zeros are not explicitly present?

(ii) Do the sets of texture zeros considered in the literature imply the vanishing of certain WB invariants?
(iii) Can the physical content of a particular texture zero ansatz be expressed in terms of relations involving WB invariant
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In this Letter, we address some of the above questions and in particular we show that some of the sets of texture zer
ered in the literature imply the vanishing of certain CP-odd invariants. Conversely, we show that starting from arbitrary
mass matrices and imposing the vanishing of certain CP-odd invariants, together with the assumption of no conspiracy a
parameters of the Dirac and Majorana neutrino mass terms, one is automatically led to given sets of texture zeros. The re
CP-odd invariants in the analysis of texture zero ansätze was to be expected, since texture zeros lead in general to a dec
number of independent CP-violating phases.

This Letter is organized as follows. In Section2, we describe the framework and set our notation. In Section3, we reexamine
the connection[2] between leptonic low energy physics and leptogenesis[3], in the case of one texture zero and two right-han
neutrinos. In Section4 we study the relation between CP-odd WB invariants and texture zeros. Finally Section5 contains our
conclusions.

2. Framework

Let us consider the above mentioned extension of the SM which consists of the addition of one right-handed neutrino pe
generation. After spontaneous gauge symmetry breaking, the following leptonic mass terms are generated:

(1)Lm = −
[
ν0
LmDν0

R + 1

2
ν0T
R CMRν0

R + l0Lmll
0
R

]
+ h.c.= −

[
1

2
nT

LCM∗nL + l0Lmll
0
R

]
+ h.c.,

whereMR , mD , andml denote the right-handed neutrino Majorana mass matrix, the neutrino Dirac mass matrix and the
lepton mass matrix, respectively, withnL = (ν0

L, (ν0
R)

c
) a column vector. The matrixM is given by

(2)M =
(

0 mD

mT
D MR

)
.

It is always possible to choose a weak basis (WB) where the matricesMR andml are both real and diagonal. The diagonalizat
of the 2n × 2n matrixM is performed via the unitary transformation

(3)V T M∗V = D,

whereD = diag(mν1,mν2,mν3,Mν1,Mν2,Mν3), with mνi
andMνi

denoting the physical masses of the light and heavy Majo
neutrinos, respectively. By writingV andD in the following block form:

(4)V =
(

K R

S T

)
,

(5)D =
(

d 0
0 D

)

the leptonic charged current interactions can be written in terms of mass eigenstates as

(6)LW = − g√
2
(liLγµKij νj L

+ liLγµRijNj L
)Wµ + h.c.,

whereνj andNj denote the light and heavy neutrinos. Since the right-handed neutrino Majorana mass term is SU(2) × U(1)

invariant, the scaleM of MR can be much larger than the scalev of electroweak symmetry breaking. AssumingM2 � v2 the light
neutrino masses are obtained to an excellent approximation from:

(7)U†
ν meffU

∗
ν = d,

wheremeff = −mDMR
−1mT

D . The natural suppression of the eigenvalues ofmeff is the crucial point of the seesaw mechanism. T
unitary matrixUν obtained from Eq.(7) is the so-called Pontecorvo, Maki, Nakagawa and Sakata matrix[4] and coincides withK
in Eqs.(4) and (6)up to corrections of orderv2/M2, which we shall ignore under the above assumption.

In the WB whereml , MR are diagonal, all mixing and CP violation are contained inmD which is a complex 3× 3 matrix. Three
of its nine arbitrary phases can be eliminated by the simultaneous rephasing ofνl , lL, so one is left with six CP-violating phase
Therefore, the three eigenvalues ofMR , together with the 15 parameters ofmD give a total of eighteen parameters. This is to
compared with the nine parameters contained in the low energy data, namely the three mixing angles and three CP-violat
contained inUν , together with the three light neutrino masses.

The fact that there are many more parameters inmD , MR than measurable quantities at low energies makes it impossib
general, to derive the seesaw parameters from low energy data. A particularly fascinating question is whether it is possibl
the size and sign[5] of the observed baryon asymmetry of the universe (BAU) to low energy CP violation, in a framew
baryogenesis through leptogenesis. It has been pointed out that this is only possible if further assumptions are introduce
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be readily seen by noting that, from Eq.(7) and the definition ofmeff, the matrixmD can be parametrized as[6]

(8)mD = iUν

√
dG

√
DR

with G an orthogonal complex matrix,
√

DR a diagonal real matrix verifying the relation
√

DR

√
DR = DR and

√
d a real matrix

with a maximum number of zeros such that
√

d
√

d
T = d . Note that

√
d is not always a square matrix, as can be seen in Secti3.

From Eq.(8), it follows that

(9)m
†
DmD = −√

DRG†
√

d
T √

dG
√

DR.

Since the CP-violating phases relevant for leptogenesis are those contained inm
†
DmD [7], it is clear that leptogenesis can occ

even if there is no CP violation at low energies, i.e., no Majorana- or Dirac-type CP phases at low energies[8].
In the literature there have been various attempts at reducing the number of seesaw parameters by considering so-call

scenarios. Models with only two right-handed neutrinos immediately lead to one massless light neutrino, whereas models
one right-handed neutrino would require two of the light neutrinos to be massless and are, therefore, ruled out in the conte
I seesaw, where no Higgs triplets are added.

3. Example with one texture zero and two right-handed neutrinos

In this section, we reexamine the connection between leptonic low energy physics and leptogenesis, in the case of o
zero and two right-handed neutrinos[9]. From the definition ofmeff, it can be readily realized that in the case of only two rig
handed neutrinos, one of the light neutrinos is massless and one has

(10)U†
ν meffU

∗
ν =

(0
m2

m3

)
.

Let us assume now thatmD has one texture zero[10] and write it in the form

(11)mD =
(

a1 0
b1 b2
c1 c2

)

with arbitrary nonzero entries, in the WB whereml andMR are diagonal and real. Let us writemD as in Eq.(8), taking into accoun
that in this case, the complex orthogonal matrixG is two-by-two and can be parametrized by

(12)G =
(

cosZ ±sinZ

−sinZ ±cosZ

)
with Z complex. We use the following parametrization[11] for Uν :

(13)Uν =

 c12c13 s12c13 s13

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13e
iδ

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13e
iδ


 · P,

wherecij ≡ cosθij , sij ≡ sinθij andP = diag(1, eiα/2,1); δ is a Dirac-type phase andα is a physical phase associated to
Majorana character of neutrinos. In the general case, with three nonzero neutrino masses, two Majorana phases would b

In the case of only two right-handed neutrinos one has

(14)d =
(0 0 0

0 m2 0
0 0 m3

)
,

√
d =

( 0 0√
m2 0
0

√
m3

)
.

From Eq.(8) we then obtain

(15)mDi1 = iUνi2
√

m2(cosZ)
√

M1 + iUνi3
√

m3(−sinZ)
√

M1,

(16)mDi2 = iUνi2
√

m2(±sinZ)
√

M2 + iUνi3
√

m3(±cosZ)
√

M2.

The zero entry inmD implies

(17)s12c13e
i α

2
√

m2(±sinZ) + s13
√

m3(±cosZ) = 0

so that

(18)cos2 Z = s2
12c

2
13ρ

s2 c2 ρ + s2 e−iα
,

sinZ

cosZ
= − s13e

−i α
2

s c
√

ρ
,

12 13 13 12 13
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whereρ = m2/m3. Thus the zero texture in the matrixmD allows for a full determination the matrixG, up to a reflexion, in term
of low energy measurable quantities. From Eq.(9), it is clear that knowledge ofG enables one to obtain the phases appearin
m

†
DmD which are the ones relevant for leptogenesis. Therefore, the presence of the texture zero leads to a connectio

leptogenesis and low energy measurable quantities.
It is instructive to consider the case of a degenerateMR . The expression form†

DmD , obtained from Eq.(9), becomes particularly
simple

(19)m
†
DmD = N

(
s2
12c

2
13ρ

2 + s2
13 ±√

ρs12c13s13(ρe−iα/2 − eiα/2)

h.c. s2
13ρ + s2

12c
2
13ρ

)
with N given by

(20)N = Mm3
1

(s12c13
√

ρ )2
√|(1+ λ2)|2 with λ = s13

s12c13
√

ρ
e−iα/2,

whereM denotes the common heavy neutrino mass. This simple example illustrates again the rôle of texture zeros in
to establish a connection between leptonic low energy physics and leptogenesis. Of course, exact degeneracy would
lifted in order for leptogenesis to be possible. Almost degeneracy among heavy neutrinos leads to the very interesting s
resonant leptogenesis[12]. Ibarra and Ross[9] have analysed in detail the predictions from models with one and two texture
in mD in the case of two right-handed neutrinos, including the constraints on leptogenesis and lepton flavour violating p
As pointed out in Ref.[9], the case of only one texture zero has the special feature of fixing the matrixG without imposing any
further restriction on light neutrino masses and mixing. This is clear from Eq.(8) which shows that each zero on each column ofmD

corresponds to an orthogonality condition between that column of the matrixG and the corresponding row of the matrixUν

√
d :

(21)(mD)ij = 0: (Uν)ik
√

dklGlj = 0.

With one zero inmD this equation has always a solution for anyUν and
√

d of the form given in Eq.(14), independently of the
hierarchy betweenM1 andM2. Obviously, the rôle of texture zeros is to introduce restrictions which lead to the decrease
number of independent seesaw parameters. In particular texture zeros lead to a decrease in the number of independent C
phases.

As we have previously emphasized, texture zeros are WB dependent, in the sense that a texture zero present in one
no longer exist in another WB. One may wonder whether it is possible to translate particular texture zeros into restrictio
seesaw parameters expressed in terms of WB invariants. The fact that texture zeros lead in general to a decrease in the
CP-violating phases, provides a hint that CP-odd WB invariants may be useful for introducing restrictions on the seesaw pa
In the next section we address this question.

4. On the relation between CP-odd WB invariants and texture zeros

We start by recalling how CP-odd WB invariants can be constructed by studying the CP properties of the present
extension of the SM, which leads to the leptonic mass terms of Eq.(1). The starting point consists of writing the most general
transformation which leaves invariant the gauge interactions. It can be readily seen that the CP transformation is given by

CPl0L(CP)† = U ′γ 0Cl0L
T , CPl0R(CP)† = V ′γ 0Cl0R

T ,

CPν0
L(CP)† = U ′γ 0Cν0

L
T , CPν0

R(CP)† = W ′γ 0Cν0
R

T ,

(22)CPW+
µ (CP)† = −(−1)δ0µW−

µ ,

whereU ′, V ′, W ′ are unitary matrices acting in flavour space. The inclusion of these matrices reflects the fact that in a WB
interactions do not distinguish the various flavours. Invariance of the mass terms under the above CP transformation, re
the following relations have to be satisfied:

(23)W ′T MRW ′ = −M∗
R, U ′†mDW ′ = m∗

D, U ′†mlV
′ = m∗

l .

From Eqs.(23)one can derive[13] various CP-odd WB invariants, which are constrained to vanish if CP invariance holds, foll
the procedure first outlined in Ref.[14]. This procedure has been widely applied in Ref.[15] to the study of CP violation in man
different scenarios. An example is the following condition:

(24)Tr
[
meffm

†
eff, hl

]3 = 0,

wherehl = mlm
†
l . This condition is satisfied in the limit of no CP violation of Dirac type, at low energies.

CP invariance requires the vanishing of certain WB invariants. In the minimal seesaw model which we are consider
an equal number of left-handed and right-handed neutrinos, in general the number of CP-violating phases equalsn2 − n, where
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n denotes the number of lepton flavours. In the presence of flavour symmetries leading to texture zeros and/or relatio
parameters, one may have a smaller number of CP-violating phases and some of the CP-odd WB invariants may aut
vanish.

Next we analyse the possible connection between texture zeros and the vanishing of certain CP-odd invariants, in th
two and three right-handed neutrinos.

4.1. Two right-handed neutrinos and two texture zeros

In the case of two right-handed neutrinos all ansätze with two texture zeros inmD have been studied in[9]. It can be readily
verified that in all two texture zero ansätze the following WB invariant condition is satisfied:

(25)I1 ≡ tr
[
mDM

†
RMRm

†
D,hl

]3 = 0.

One may ask whether the converse is also true, i.e., whether the imposition of the condition of Eq.(25)on arbitrary complex leptoni
mass matrices automatically leads to one of the two zero ansätze classified in[9]. We show that Eq.(25), together with a reasonab
assumption of no conspiracy among the parameters ofmD and those ofMR , does require the matrixmD to have two texture zero
in the WB where bothMR andml are diagonal real. Note that the hypothesis of “no conspiracy” is quite natural, sincemD andMR

originate in different terms of the Lagrangian.
In order to fix the notation let us write

(26)mDM
†
RMRm

†
D =


 r1 α1 α2

α∗
1 r2 α3

α∗
2 α∗

3 r3


 ,

whereri are real andαi are complex elements, which depend on the heavy right-handed neutrino masses and the matrix
of mD . Writing

(27)mD ≡
[

a1 a2
b1 b2
c1 c2

]

we obtain for theαi in Eq.(26)

(28)α1 = M2
1a1b

∗
1 + M2

2a2b
∗
2, α2 = M2

1a1c
∗
1 + M2

2a2c
∗
2, α3 = M2

1b1c
∗
1 + M2

2b2c
∗
2.

The WB invariantI1, calculated in the WB whereml is also diagonal, is given by

(29)I1 = 6i
(
m2

τ − m2
µ

)(
m2

τ − m2
e

)(
m2

µ − m2
e

)
Im

[
α1α

∗
2α3

]
.

Clearly,I1 = 0, if and only if one of theαi ’s is equal to zero or else theαi ’s have cyclic phases in such a way that arg[α1α
∗
2α3] = 0,π .

If one adopts the above “no conspiracy” hypothesis, it is clear that the solutions where one of theαi ’s vanishes, would require tha
each one of the two zeros contributing to thatαi should vanish. It can then be readily verified hat solutions of Eq.(25) in which one
of theαi ’s vanishes, correspond to textures with one zero in each column.

For example the requirementα1 = 0 is verified in the case of the following fourmD textures:

(30)

[ 0 0
b1 b2
c1 c2

]
,

[ 0 a2
b1 0
c1 c2

]
,

[
a1 0
0 b2
c1 c2

]
,

[
a1 a2
0 0
c1 c2

]
.

All other possible textures with one zero in each column correspond to eitherα2 = 0 or α3 = 0. We consider now the solutions
Eq. (25) corresponding to cyclicαi ’s. It can be readily verified that cyclic solutions correspond to textures with two zeros
same column. Indeed, textures with two zeros in the first column eliminate the terms withM2

2 whilst terms with two zeros in th
second one eliminate the terms withM2

1. An example is

(31)

[ 0 a2
0 b2
c1 c2

]
, α1 = M2

2a2b
∗
2, α2 = M2

2a2c
∗
2, α3 = M2

2b2c
∗
2

which obviously leads to arg[α1α
∗
2α3] = 0.

All the fifteen different textures with two zeros inmD are thus obtained from the invariant conditionI1 = 0, together with the
“no-conspiracy” hypothesis. The low energy predictions arising from all these textures were analysed in Ref.[9], where it was
shown that only five of them are allowed by present experiment. It was also pointed out in[9] that in general texture zeros inmD

may appear in a weak basis where neitherMR norml are diagonal. Implications for low energy physics in the case of nondiag
MR were also discussed[9], under certain restrictive assumptions onml . At this stage, it is worth noting that there are other CP-
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WB invariants which vanish for all the two zero textures considered above, even if they arise in a basis whereMR is not diagonal.
An example is the following WB invariant condition:

(32)I ′ ≡ tr
[
mDm

†
D,hl

]3 = 0

which is verified for any texture with two zeros inmD in a WB whereml is diagonal, whileMR is arbitrary.
It should be pointed out that two zeros inmD , in the WB whereMR andml are diagonal, still allow for CP-violation. In fac

with two zeros inmD one can only eliminate at most two independent CP-violating phases out of the three present in the
case, with two right-handed neutrinos. As a result, not all CP-odd WB invariants vanish in the case of two texture zeros. An
of a CP-odd invariant[13] which does not vanish is given by

(33)I ′′ ≡ Im tr
[(

m
†
DmD

)
M∗

RMRM∗
R

(
m

†
DmD

)∗
MR

]
.

In the WB whereMR is diagonal, it can be written as

(34)I ′′ = M1M2
(
M2

2 − M2
1

)
Imh2

12,

where

(35)h12 = (
m

†
DmD

)
12 = a∗

1a2 + b∗
1b2 + c∗

1c2

so that Imh2
12 can differ from zero in the case of two texture zeros. This invariant is sensitive to the combinationm

†
DmD which is

relevant for leptogenesis. Furthermore, two texture zeros inmD also allow for CP violation of Dirac type in the leptonic charg
weak currents. This can be seen from the condition written in Eq.(24).

4.2. Three right-handed neutrinos and three texture zeros

Let us now consider the case of three right-handed neutrinos and analyse the conditions under which the invariantI1 vanishes.
In this casemD is a three-by-three matrix which can be written as

(36)mD =
[

a1 a2 a3
b1 b2 b3
c1 c2 c3

]
.

The parametersαi of Eq.(26)are now given by

α1 = M2
1a1b

∗
1 + M2

2a2b
∗
2 + M2

3a3b
∗
3, α2 = M2

1a1c
∗
1 + M2

2a2c
∗
2 + M2

3a3c
∗
3,

(37)α3 = M2
1b1c

∗
1 + M2

2b2c
∗
2 + M2

3b3c
∗
3

for MR diagonal. Eq.(29) remains valid in the WB whereml is also diagonal. There are, as before, two types of possible solu
Solutions in which one of theαi ’s is zero (irrespective ofMR) are all those corresponding to three zeros inmD-one in each column
leaving one row without zeros, as for example in

(38)

[ 0 0 a3
b1 b2 0
c1 c2 c3

]
(α1 = 0),

[ 0 a2 a3
b1 b2 b3
c1 0 0

]
(α2 = 0),

[
a1 a2 a3
b1 0 b3
0 c2 0

]
(α3 = 0).

Solutions with three zeros in the same row would lead to one vanishingαi , but they are physically unacceptable since they co
spond to the decoupling of one generation at low energies.

Any one of themD matrices with three zeros has six real independent parameters and three independent CP-violatin
Furthermore, we have three Majorana massesM1, M2, M3. This is to be compared to three light neutrino masses, three m
angles and three physical CP-violating phases at low energies.

In addition to the solutions in Eq.(38), we obtain a set of cyclic solutions, similar to the case of two right-handed neutrin
Eq.(31), such that arg[α1α

∗
2α3] = 0 but withαi �= 0. However, these solutions correspond to four texture zeros and therefore w

discussed in the following subsection, which is dedicated to the study of the connection between low and high energy CP
in the context of models with four texture zeros.

4.3. Three right-handed neutrinos and four texture zeros

Cyclic solutions of Eq.(25), in the case of three right-handed neutrinos, require, for arbitrary phases inmD , four zeros in this
matrix. In this case one column has no zeros, the other two columns have two zeros each, as for example in

(39)

[ 0 0 a3
b1 0 b3

]
,

[ 0 a2 0
0 b2 b3

]
.

0 c2 c3 c1 c2 0
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Cyclic solutions where all zeros are grouped in one square, i.e., one column and one row have no zeros, are physically una
as they lead toUi1 = 0 for somei.

For cyclic solutions of Eq.(25), thus having four texture zeros, the number of parameters inmD is much reduced. One has fiv
real parameters and two complex phases inmD . In particular, for the nonsquared cyclic solutions in Eq.(39), one may easily find
the connection between leptogenesis and low energy physics. Let us consider as an example, the first matrix in Eq.(39). Theai , bi

andci in mD can be expressed as functions of the neutrino masses, mixing angles and CP-violating phases through Eq.(8). In this
example, the matrixG can be fully determined by Eq.(21)due to the existence of four zeros. With three right-handed neutrino
matrix

√
d is diagonal with nonzero entries

√
mi and we have, e.g.,

(40)(mD)12 = 0: (Uν)1k

√
mkGk2 = 0

leading to

(41)( �G1)i = (
εijk(Uν)1j

√
mj(Uν)3k

√
mk

) 1

N1
,

(42)( �G2)i = (
εijk(Uν)1j

√
mj(Uν)2k

√
mk

) 1

N2
,

(43)( �G3)i = εijk( �G1)j ( �G2)k = 1

N3
(Uν)1i

√
mi (no sum ini),

where the �Gi are the columns of the matrixG and theNi are complex normalization factors, with phases such that�G2
i = 1.

Let us now consider the nonzero entries ofmD , for exampleb1, which corresponds to

(44)(mD)21 = b1 = i
(
(Uν)2k

√
mk

)
Gk1

√
M1.

Once theGkj are replaced by the explicit formulas obtained above, the coefficients ofmD can be fully expressed in terms
physical quantities only, up to nonphysical phases which can be rotated away.

In this example we have

(45)−meff = mD

1

D
mT

D =



a2
3M−1

3 a3b3M
−1
3 a3c3M

−1
3

a3b3M
−1
3 b2

1M
−1
1 + b2

3M
−1
3 b3c3M

−1
3

a3c3M
−1
3 b3c3M

−1
3 c2

2M
−1
2 + c2

3M
−1
3


 .

Only five entries inmeff are independent. We can relate(meff)23 to other entries by

(46)(meff)11(meff)23 − (meff)12(meff)13 = 0.

This relation implies low energy constraints and furthermore guarantees the orthogonality of columns one and two of the mG,
as defined above. It is clear from the definition ofmeff thatG does not play any rôle in low energy physics. However in the ma
m

†
DmD , which is the matrix relevant for leptogenesis, the elements ofG play an important rôle since they do not cancel out. In

example, there is a strong relation between leptogenesis and low energy physics due to the fact thatG can be fully expressed i
terms of measurable low energy parameters. With four texture zeros, there are constraints in the low energy physics wh
from the reduction of the independent parameters inmeff as expressed in this example by Eq.(46). This relation excludes scenario
with direct or inverse hierarchical light neutrinos, i.e., the case of one neutrino mass much smaller than the other two. Lik
the three zero textures of Section4.2, there are also low energy constraints which in this case translate into the existence of o
in one of the off-diagonal elements ofmeff (and its symmetric entry). For instance, for the first matrix in Eq.(38), corresponding to
the caseα1 = 0, one has(meff)12 = 0, or equivalently

(47)m1U11U21 + m2U12U22 + m3U13U23 = 0.

In Ref. [16] the stability of zeros in neutrino mass matrices under quantum corrections, in type I seesaw models, has bee
It was found that some of the two-zero textures for the neutrino mass matrix that have been classified as incompatible wi
mental data, are not excluded. A detailed study of the phenomenology of three and four texture zeros inmD is beyond the scope o
this Letter.

Four texture zeros may also be obtained from the solutions with three texture zeros considered in the previous sub
which one of theαi ’s is zero. However, for these cases, the extra zero has to be imposed by demanding that a new invI2
vanishes.1 Taking

(48)I2 ≡ tr
[
M

†
RMR,m

†
DmD

]3

1 With respect to the cyclic solutions, we do not need to consider this invariant, as they automatically obeyI2 = 0.
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to

articular,
nishing of
osition of
ters of
terized by
exture

data, such
eros. The
w
lead

would

e projects
T UNIT

Physics
mboldt
M and

t) and
and computingI2 for, e.g., theα1 = 0 case in Eq.(38), one finds

(49)I2 = 6i
(
M2

3 − M2
2

)(
M2

3 − M2
1

)(
M2

2 − M2
1

)|c3|2 Im
[
b∗

1b2c1c
∗
2

]
.

It is clear thatI2 = 0, if one of the parameters2 b1, b2, c1, c2 vanishes. The casec3 = 0 is of no physical interest as it leads
vanishing solar neutrino mixing, which is clear by computingmeff. Taking, e.g.,c1 = 0, one then obtains formD

(50)mD =
[ 0 0 a3

b1 b2 0
0 c2 c3

]

which has 4 texture zeros.
It is interesting to note that imposingI2 equal to zero, irrespective of conditionI1 = 0, for nondegenerateMi , requires:

(51)Im
[(

m
†
DmD

)
12

(
m

†
DmD

)
31

(
m

†
DmD

)
23

] = 0,

where

(52)
(
m

†
DmD

)
12 = a∗

1a2 + b∗
1b2 + c∗

1c2,
(
m

†
DmD

)
13 = a∗

1a3 + b∗
1b3 + c∗

1c3,
(
m

†
DmD

)
23 = a∗

2a3 + b∗
2b3 + c∗

2c3,

MatricesmD , with three zeros, one on each row leaving one column without zeros, such as

(53)

[ 0 a2 a3
0 b2 b3
c1 0 c3

]
,

[
a1 a2 0
0 b2 b3
0 c2 c3

]
,

[
a1 0 a3
b1 0 b3
c1 c2 0

]

verify this condition. These matrices are the transposed of the solutions found in Section4.2.

5. Conclusions

We have shown that CP-odd WB invariants can be useful in the analysis of lepton-flavour models with texture zeros. In p
we have pointed out that there is a large class of sets of texture zeros considered in the literature which lead to the va
certain CP-odd invariants. Conversely, it was shown that starting from arbitrary complex leptonic mass matrices, the imp
the vanishing of certain CP-odd invariants together with a reasonable assumption of no conspiracy among the paramemD

andMR , automatically leads to given sets of texture zeros. These WB invariants enable one to recognize models charac
texture zeros inmD in the WB whereml , MR are diagonal, when these same models are written in a different WB where the t
zeros are not manifest.

We have also discussed the rôle of texture zeros in allowing for a connection between leptogenesis and low energy
as leptonic masses, mixing and CP violation. We have done the analysis in the context of two, three and four texture z
crucial point is the fact that in the presence of texture zeros, the matrixG defined in Eq.(8), can be expressed in terms of lo
energy parameters. Recall thatG enters inm†

DmD which in turn plays a crucial rôle in leptogenesis. Furthermore texture zeros
in general to specific predictions at low energies.

An important step towards the understanding of the flavour puzzle would be finding a theoretical framework which
naturally lead to the vanishing of the CP-odd invariants considered in this Letter or else to specific texture zeros.
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