1,272 research outputs found

    CDKN1C/p57kip2 Is a Candidate Tumor Suppressor Gene in Human Breast Cancer

    Get PDF
    BACKGROUND. CDKN1C (also known as p57KIP2) is a cyclin-dependent kinase inhibitor previously implicated in several types of human cancer. Its family members (CDKN1A/p21CIP1 and B/p27KIP1) have been implicated in breast cancer, but information about CDKN1C's role is limited. We hypothesized that decreased CDKN1C may be involved in human breast carcinogenesis in vivo. METHODS. We determined rates of allele imbalance or loss of heterozygosity (AI/LOH) in CDKN1C, using an intronic polymorphism, and in the surrounding 11p15.5 region in 82 breast cancers. We examined the CDKN1C mRNA level in 10 cancers using quantitative real-time PCR (qPCR), and the CDKN1C protein level in 20 cancers using immunohistochemistry (IHC). All samples were obtained using laser microdissection. Data were analyzed using standard statistical tests. RESULTS. AI/LOH at 11p15.5 occurred in 28/73 (38%) informative cancers, but CDKN1C itself underwent AI/LOH in only 3/16 (19%) cancers (p = ns). In contrast, CDKN1C mRNA levels were reduced in 9/10 (90%) cancers (p < 0.0001), ranging from 2–60% of paired normal epithelium. Similarly, CDKN1C protein staining was seen in 19/20 (95%) cases' normal epithelium but in only 7/14 (50%) cases' CIS (p < 0.004) and 5/18 (28%) cases' IC (p < 0.00003). The reduction appears primarily due to loss of CDKN1C expression from myoepithelial layer cells, which stained intensely in 17/20 (85%) normal lobules, but in 0/14 (0%) CIS (p < 0.00001). In contrast, luminal cells displayed less intense, focal staining fairly consistently across histologies. Decreased CDKN1C was not clearly associated with tumor grade, histology, ER, PR or HER2 status. CONCLUSION. CDKN1C is expressed in normal epithelium of most breast cancer cases, mainly in the myothepithelial layer. This expression decreases, at both the mRNA and protein level, in the large majority of breast cancers, and does not appear to be mediated by AI/LOH at the gene. Thus, CDKN1C may be a breast cancer tumor suppressor.Department of Defense Breast Cancer Research Program (DAMD 17-99-1-9573); National Institutes of Health PHS (CA081078); LaPann Fun

    Involvement of F-Actin in Chaperonin-Containing t-Complex 1 Beta Regulating Mouse Mesangial Cell Functions in a Glucose-Induction Cell Model

    Get PDF
    The aim of this study is to investigate the role of chaperonin-containing t-complex polypeptide 1 beta (CCT2) in the regulation of mouse mesangial cell (mMC) contraction, proliferation, and migration with filamentous/globular-(F/G-) actin ratio under high glucose induction. A low CCT2 mMC model induced by treatment of small interference RNA was established. Groups with and without low CCT2 induction examined in normal and high (H) glucose conditions revealed the following major results: (1) low CCT2 or H glucose showed the ability to attenuate F/G-actin ratio; (2) groups with low F/G-actin ratio all showed less cell contraction; (3) suppression of CCT2 may reduce the proliferation and migration which were originally induced by H glucose. In conclusion, CCT2 can be used as a specific regulator for mMC contraction, proliferation, and migration affected by glucose, which mechanism may involve the alteration of F-actin, particularly for cell contraction

    Automatic Cephalometric Landmark Detection on X-Ray Images Using Object Detection

    Full text link
    We propose a new deep convolutional cephalometric landmark detection framework for orthodontic treatment. Our proposed method consists of two major steps: landmark detection using a deep neural network for object detection, and landmark repair to ensure one instance per landmark class. For landmark detection, we modify the loss function of the backbone network YOLOv3 to eliminate the constrains on the bounding box and incorporate attention mechanism to improve the detection accuracy. For landmark repair, a triangle mesh is generated from the average face to eliminate superfluous instances, followed by estimation of missing landmarks from the detected ones using Laplacian Mesh. Trained and evaluated on a public benchmark dataset from IEEE ISBI 2015 grand challenge, our proposed framework obtains comparable results compared to the state-of-the-art methods for cephalometric landmark detection, and demonstrates the efficacy of using a deep CNN model for accurate object detection of landmarks defined by only a single pixel location

    Diagnosis of Polypoidal Choroidal Vasculopathy From Fluorescein Angiography Using Deep Learning

    Full text link
    Purpose: To differentiate polypoidal choroidal vasculopathy (PCV) from choroidal neovascularization (CNV) and to determine the extent of PCV from fluorescein angiography (FA) using attention-based deep learning networks. Methods: We build two deep learning networks for diagnosis of PCV using FA, one for detection and one for segmentation. Attention-gated convolutional neural network (AG-CNN) differentiates PCV from other types of wet age-related macular degeneration. Gradient-weighted class activation map (Grad-CAM) is generated to highlight important regions in the image for making the prediction, which offers explainability of the network. Attention-gated recurrent neural network (AG-PCVNet) for spatiotemporal prediction is applied for segmentation of PCV. Results: AG-CNN is validated with a dataset containing 167 FA sequences of PCV and 70 FA sequences of CNV. AG-CNN achieves a classification accuracy of 82.80% at image level, and 86.21% at patient-level for PCV. Grad-CAM shows that regions contributing to decision-making have on average 21.91% agreement with pathological regions identified by experts. AG-PCVNet is validatedwith56PCV sequences from the EVEREST-I study and achieves a balanced accuracy of 81.132% and dice score of 0.54. Conclusions: The developed software provides a means of performing detection and segmentation of PCV on FA images for the first time. This study is a promising step in changing the diagnostic procedure of PCV and therefore improving the detection rate of PCV using FA alone. Translational Relevance: The developed deep learning system enables early diagnosis of PCV using FA to assist the physician in choosing the best treatment for optimal visual prognosis. Introductio

    Hybrid phishing detection using joint visual and textual identity

    Get PDF
    In recent years, phishing attacks have evolved considerably, causing existing adversarial features that were widely utilised for detecting phishing websites to become less discriminative. These developments have fuelled growing interests among security researchers towards an anti-phishing strategy known as the identity-based detection technique. Identity-based detection techniques have consistently achieved high true positive rates in a rapidly changing phishing landscape, owing to its capitalisation on fundamental brand identity relations that are inherent in most legitimate webpages. However, existing identity-based techniques often suffer higher false positive rates due to complexities and challenges in establishing the webpage’s brand identity. To close the existing performance gap, this paper proposes a new hybrid identity-based phishing detection technique that leverages webpage visual and textual identity. Extending earlier anti-phishing work based on the website logo as visual identity, our method incorporates novel image features that mimic human vision to enhance the logo detection accuracy. The proposed hybrid technique integrates the visual identity with a textual identity, namely, brand-specific keywords derived from the webpage content using textual analysis methods. We empirically demonstrated on multiple benchmark datasets that this joint visual-textual identity detection approach significantly improves phishing detection performance with an overall accuracy of 98.6%. Benchmarking results against an existing technique showed comparable true positive rates and a reduction of up to 3.4% in false positive rates, thus affirming our objective of reducing the misclassification of legitimate webpages without sacrificing the phishing detection performance. The proposed hybrid identitybased technique is proven to be a significant and practical contribution that will enrich the anti-phishing community with improved defence strategies against rapidly evolving phishing schemes

    Adaptor protein Shc acts as an immune-regulator for the LPS-stimulated maturation of bone marrow-derived dendritic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Shc isoforms is known to mediate immune responses and has been indicated as a negative regulator of autoimmunity and lymphocyte activation. We aimed to evaluate the immune-regulatory role of Shc in rat bone marrow-derived DCs in the maturation process triggered by LPS.</p> <p>Results</p> <p>We found that, in response to LPS, expression of Shc proteins was induced and that neutralization of Shc inhibited the LPS-induced transient phosphorylation of p52Shc on pTyr239/240 in DCs of Lewis (LEW; RT1<sup>l</sup>) rats. Moreover, the significantly enhanced expression of IL-10 and the surface level of costimulatory molecule CD80, as well as suppressed expression of IL-6 and IL-12 in the Shc-silenced DCs were also observed. Similar IκB phosphorylation occurred in Shc-silenced DCs primed by LPS, indicating Shc is not associated with NF-κB pathway. We further demonstrate that Shc blockade on LPS-treated DCs results in significant increase of the overall STAT3 phosphorylation and the relative levels of phospho-STAT3 in the nuclear fraction. STAT3 activation by LPS with or without Shc blockade was totally abolished by SU6656, a selective Src family kinases inhibitor, underscoring the critical role of Src-mediated activation.</p> <p>Conclusions</p> <p>We conclude that Shc blockade in LPS-primed DC leads to the development of tolerogenic DC via Src-dependent STAT3 activation and that adaptor protein Shc might play a pivotal role in mediating immunogenic and tolerogenic properties of DCs.</p

    Simultaneous Detection of Multiple Fish Pathogens Using a Naked-Eye Readable DNA Microarray

    Get PDF
    We coupled 16S rDNA PCR and DNA hybridization technology to construct a microarray for simultaneous detection and discrimination of eight fish pathogens (Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare, Lactococcus garvieae, Photobacterium damselae, Pseudomonas anguilliseptica, Streptococcus iniae and Vibrio anguillarum) commonly encountered in aquaculture. The array comprised short oligonucleotide probes (30 mer) complementary to the polymorphic regions of 16S rRNA genes for the target pathogens. Targets annealed to the microarray probes were reacted with streptavidin-conjugated alkaline phosphatase and nitro blue tetrazolium/5-bromo-4-chloro-3′-indolylphosphate, p-toluidine salt (NBT/BCIP), resulting in blue spots that are easily visualized by the naked eye. Testing was performed against a total of 168 bacterial strains, i.e., 26 representative collection strains, 81 isolates of target fish pathogens, and 61 ecologically or phylogenetically related strains. The results showed that each probe consistently identified its corresponding target strain with 100% specificity. The detection limit of the microarray was estimated to be in the range of 1 pg for genomic DNA and 103 CFU/mL for pure pathogen cultures. These high specificity and sensitivity results demonstrate the feasibility of using DNA microarrays in the diagnostic detection of fish pathogens

    Immunological and Regenerative Aspects of Hepatic Mast Cells in Liver Allograft Rejection and Tolerance

    Get PDF
    The precise roles of mast cells in liver allograft rejection and tolerance are still unknown. This study aimed to explore the roles of mast cells in immune regulation and liver regeneration for tolerance induction by using rat models of orthotopic liver transplantation (OLT).Stem cell factor (SCF) and its receptor c-Kit, which are critical to the migration and development of not only stem cells but also mast cells, significantly increased in the tolerogenic livers as compared with rejected livers. The significant elevation of mast cell tryptase, high-affinity IgE receptor, and histamine suggested the activation of mast cells in liver allografts at the tolerogenic phase after OLT. Immunohistochemical analysis using confocal microscope clearly showed colocalization of mast cells, Foxp3(+) Tregs, gamma delta T cells, and recipient-derived hepatic progenitor cells with higher expression of SCF, IL-9, IL-10, TGF-beta 1, and IL-17 related to immunoregulation and liver regeneration in the donor grafts of a tolerogenic OLT model. Cross-talk among mast cells and other cells was evaluated by in vitro studies demonstrating that syngeneic bone marrow-derived mast cells (BMMCs) co-cultured with naive splenocytes or primary hepatocytes significantly increased the population of splenic gamma delta T cells by mitogen stimulation or by mast cell degranulation, and also significantly induced the hepatocyte proliferation, respectively. Our results suggested that mast cells in the donor grafts may play important roles in the induction/maintenance of immune tolerance and liver regeneration resulting in the replacement of hepatic cells from donor to recipient

    Different Types of Cell Death Induced by Enterotoxins

    Get PDF
    The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins) are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed
    corecore