186 research outputs found
Phase diagram of a dilute fermion gas with density imbalance
We map out the phase diagram of a dilute two-component atomic fermion gas
with unequal populations and masses under a Feshbach resonance. As in the case
of equal masses, no uniform phase is stable for an intermediate coupling
regime. For majority component heavier, the unstable region moves towards the
BEC side. When the coupling strength is increased from the normal phase, there
is an increased parameter space where the transition is into the FFLO state.
The converse is true if the majority is light.Comment: Proceeding for MS-HTSC VIII meeting, July 9-14 2006, Dresden; To
appear in Physica
Scaling Flows and Dissipation in the Dilute Fermi Gas at Unitarity
We describe recent attempts to extract the shear viscosity of the dilute
Fermi gas at unitarity from experiments involving scaling flows. A scaling flow
is a solution of the hydrodynamic equations that preserves the shape of the
density distribution. The scaling flows that have been explored in the
laboratory are the transverse expansion from a deformed trap ("elliptic flow"),
the expansion from a rotating trap, and collective oscillations. We discuss
advantages and disadvantages of the different experiments, and point to
improvements of the theoretical analysis that are needed in order to achieve
definitive results. A conservative bound based on the current data is that the
minimum of the shear viscosity to entropy density ration is that eta/s is less
or equal to 0.5 hbar/k_B.Comment: 32 pages, prepared for "BCS-BEC crossoverand the Unitary Fermi Gas",
Lecture Notes in Physics, W. Zwerger (editor), Fig. 5 corrected, note added;
final version, corrected typo in equ. 9
Universal Quantum Viscosity in a Unitary Fermi Gas
A Fermi gas of atoms with resonant interactions is predicted to obey
universal hydrodynamics, where the shear viscosity and other transport
coefficients are universal functions of the density and temperature. At low
temperatures, the viscosity has a universal quantum scale where
is the density, while at high temperatures the natural scale is
where is the thermal momentum. We employ breathing mode damping to
measure the shear viscosity at low temperature. At high temperature , we
employ anisotropic expansion of the cloud to find the viscosity, which exhibits
precise scaling. In both experiments, universal hydrodynamic
equations including friction and heating are used to extract the viscosity. We
estimate the ratio of the shear viscosity to the entropy density and compare to
that of a perfect fluid.Comment: 13 pages, 3 figure
Suppression of magnetic ordering in quasi-one-dimensional FexCo1-xNb2O6 compounds
International audienceWe present a systematic investigation of the series of compounds FexCo1-xNb2O6 by means of x-ray and neutron powder diffraction combined with magnetic measurements, carried out in the paramagnetic as well as in the ordered state, to probe the stability of the magnetic ordering against the composition changes in this model Ising system. Fe for Co substitution induces a continuous lattice volume increase, preserving the orthorhombic crystal structure. The unit-cell expansion is anisotropic and occurs mainly in the ab plane. The observed magnetic structures for x=0,0.8, and 1 are described by the propagation vectors (0,1/2,0) and (1/2,1/2,0), and are consistent with the picture of ferromagnetic Ising-type chains of Fe/Co spins antiferromagnetically coupled by weak interchain interactions. We find out that for
Hydrodynamic Modes in a Trapped Strongly Interacting Fermi Gases of Atoms
The zero-temperature properties of a dilute two-component Fermi gas in the
BCS-BEC crossover are investigated. On the basis of a generalization of the
variational Schwinger method, we construct approximate semi-analytical formulae
for collective frequencies of the radial and the axial breathing modes of the
Fermi gas under harmonic confinement in the framework of the hydrodynamic
theory. It is shown that the method gives nearly exact solutions.Comment: 11 page
Calorimetry of Bose-Einstein condensates
We outline a practical scheme for measuring the thermodynamic properties of a
Bose-Einstein condensate as a function of internal energy. We propose using
Bragg scattering and controlled trap manipulations to impart a precise amount
of energy to a near zero temperature condensate. After thermalisation the
temperature can be measured using standard techniques to determine the state
equation . Our analysis accounts for interaction effects and the
excitation of constants of motion which restrict the energy available for
thermalisation.Comment: 6 pages, 1 figure. Updated to published versio
Fermionic superfluidity: From high Tc superconductors to ultracold Fermi gases
We present a pairing fluctuation theory which self-consistently incorporates
finite momentum pair excitations in the context of BCS--Bose-Einstein
condensation (BEC) crossover, and we apply this theory to high
superconductors and ultracold Fermi gases. There are strong similarities
between Fermi gases in the unitary regime and high Tc superconductors. Here we
address key issues of common interest, especially the pseudogap. In the Fermi
gases we summarize recent experiments including various phase diagrams (with
and without population imbalance), as well as evidence for a pseudogap in
thermodynamic and other experiments.Comment: Expanded version, invited talk at the 5th International Conference on
Complex Matter -- Stripes 2006, 6 pages, 6 figure
Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance
We present a brief account of the most salient properties of vortices in
dilute atomic Fermi superfluids near a Feshbach resonance.Comment: 6 pages, 1 figure, and jltp.cls. Several typos and a couple of
inaccuracies have been correcte
Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant
Coherent elastic neutrino-nucleus scattering (CENS) offers a unique way
to study neutrino properties and to search for new physics beyond the Standard
Model. Nuclear reactors are promising sources to explore this process at low
energies since they deliver large fluxes of (anti-)neutrinos with typical
energies of a few MeV. In this paper, a new-generation experiment to study
CENS is described. The NUCLEUS experiment will use cryogenic detectors
which feature an unprecedentedly low energy threshold and a time response fast
enough to be operated in above-ground conditions. Both sensitivity to
low-energy nuclear recoils and a high event rate tolerance are stringent
requirements to measure CENS of reactor antineutrinos. A new experimental
site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in
France is described. The VNS is located between the two 4.25 GW
reactor cores and matches the requirements of NUCLEUS. First results of on-site
measurements of neutron and muon backgrounds, the expected dominant background
contributions, are given. In this paper a preliminary experimental setup with
dedicated active and passive background reduction techniques is presented.
Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence
with an active muon-veto at shallow overburden is studied. The paper concludes
with a sensitivity study pointing out the promising physics potential of
NUCLEUS at the Chooz nuclear power plant
First results from the CRESST-III low-mass dark matter program
The CRESST experiment is a direct dark matter search which aims to measure
interactions of potential dark matter particles in an earth-bound detector.
With the current stage, CRESST-III, we focus on a low energy threshold for
increased sensitivity towards light dark matter particles. In this manuscript
we describe the analysis of one detector operated in the first run of
CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1eV.
This result was obtained with a 23.6g CaWO crystal operated as a cryogenic
scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del
Gran Sasso (LNGS). Both the primary phonon/heat signal and the simultaneously
emitted scintillation light, which is absorbed in a separate
silicon-on-sapphire light absorber, are measured with highly sensitive
transition edge sensors operated at ~15mK. The unique combination of these
sensors with the light element oxygen present in our target yields sensitivity
to dark matter particle masses as low as 160MeV/c.Comment: 9 pages, 9 figure
- …