34 research outputs found

    Forecasting the cytokine storm following systemic interleukin (IL)-2 administration

    Get PDF
    Extensive clinical experience has shown that systemic interleukin (IL)-2 administration can induce complete or partial regression of renal cell cancer (RCC) metastases in 15 to 20 % of patients. Since IL-2 has no direct anti-cancer effects, it is believed that cancer regression is mediated either by a direct modulation of immune cell effector functions or through the mediation of soluble factors released as a result of IL-2 administration. We previously observed that transcriptional and protein changes induced by systemic IL-2 administration affect predominantly mononuclear phagocytes with little effect, particularly within the tumor microenvironment, on T cell activation, localization and proliferation. It further appeared that mononuclear phagocyte activation could be best explained by the indirect mediation of a secondary release of cytokines by IL-2 responsive cells either in the circulation or in peripheral tissues. To better characterize the cytokine outburst that follows systemic IL-2 administration we followed the serum levels of 68 soluble factors in ten patients with RCC undergoing high dose (720,000 IU/kg intravenously every 8 hours) IL-2 therapy. Serum was collected before therapy, 3 hours after the 1(st )and 4(th )dose and assayed on a multiplexed protein array platform. This study demonstrated that 1) the serum concentration of more than half the soluble factors studied changed significantly during therapy; 2) changes became more dramatic with increasing doses; 3) subclasses of soluble factors displayed different kinetics and 4) cytokine patterns varied quantitatively among patients. This study shows that the cytokine storm that follows systemic IL-2 administration is complex and far-reaching inclusive of soluble factors with disparate, partly redundant and partly contrasting effects on immune function. Therefore comparing in parallel large number of soluble factors, it sets a comprehensive foundation for further elucidation of "cytokine storm" in larger patient pools. Based on this analysis, we propose a prospective collection of serum samples in a larger cohort of patients undergoing IL-2 administration with the purpose of discerning patterns predictive of clinical outcome and toxicity

    Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms

    Get PDF
    BACKGROUND: Interferon (IFN)-α is considered a key modulator of immunopathological processes through a signature-specific activation of mononuclear phagocytes (MPs). This study utilized global transcript analysis to characterize the effects of the entire type I IFN family in comparison to a broad panel of other cytokines on MP previously exposed to Lipopolysaccharide (LPS) stimulation in vitro. RESULTS: Immature peripheral blood CD14+ MPs were stimulated with LPS and 1 hour later with 42 separate soluble factors including cytokines, chemokines, interleukins, growth factors and IFNs. Gene expression profiling of MPs was analyzed 4 and 9 hours after cytokine stimulation. Four hours after stimulation, the transcriptional analysis of MPs revealed two main classes of cytokines: one associated with the alternative and the other with the classical pathway of MP activation without a clear polarization of type I IFNs effects. In contrast, after 9 hours of stimulation most type I IFN isoforms induced a characteristic and unique transcriptional pattern separate from other cytokines. These "signature" IFNs included; IFN-β, IFN-α2b/α2, IFN-αI, IFN-α2, IFN-αC, IFN-αJ1, IFN-αH2, and INF-α4B and induced the over-expression of 44 genes, all of which had known functional relationships with IFN such as myxovirus resistance (Mx)-1, Mx-2, and interferon-induced hepatitis C-associated microtubular aggregation protein. A second group of type I IFNs segregated separately and in closer association with the type II IFN-γ. The phylogenetic relationship of amino acid sequences among type I IFNs did not explain their sub-classification, although differences at positions 94 through 109 and 175 through 189 were present between the signature and other IFNs. CONCLUSION: Seven IFN-α isoforms and IFN-β participate in the late phase polarization of MPs conditioned by LPS. This information broadens the previous view of the central role played by IFN-α in autoimmunity and tumor rejection by including and/or excluding an array of related factors likely to be heterogeneously expressed by distinct sub-populations of individuals in sickness or in response to biological therapy

    Selection and validation of endogenous reference genes using a high throughput approach

    Get PDF
    BACKGROUND: Endogenous reference genes are commonly used to normalize expression levels of other genes with the assumption that the expression of the former is constant in different tissues and in different physiopathological conditions. Whether this assumption is correct it is, however, still matter of debate. In this study, we searched for stably expressed genes in 384 cDNA array hybridization experiments encompassing different tissues and cell lines. RESULTS: Several genes were identified whose expression was highly stable across all samples studied. The usefulness of 8 genes among them was tested by normalizing the relative gene expression against test genes whose expression pattern was known. The range of accuracy of individual endogenous reference genes was wide whereas consistent information could be obtained when information pooled from different endogenous reference genes was used. CONCLUSIONS: This study suggests that even when the most stably expressed genes in array experiments are used as endogenous reference, significant variation in test gene expression estimates may occur and the best normalization is achieved when data from several endogenous reference genes are pooled together to minimize minimal but significant variation among samples. We are presently optimizing strategies for the preparation of endogenous reference gene mixtures that could yield information comparable to that of data pooled from individual endogenous reference gene normalizations

    Gene expression profiling of cutaneous wound healing

    Get PDF
    BACKGROUND: Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. STUDY DESIGN: This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days). 17.5K cDNA microarrays were utilized to profile the biopsy material. RESULTS: Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy) were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies) and repair and angiogenesis genes in the later (4 to 8 days) biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. CONCLUSION: The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2 macrophages, may help the interpretation of the cellular and molecular events occurring in the microenvironment of serially biopsied tissues

    Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms

    No full text
    Abstract Background Interferon (IFN)-α is considered a key modulator of immunopathological processes through a signature-specific activation of mononuclear phagocytes (MPs). This study utilized global transcript analysis to characterize the effects of the entire type I IFN family in comparison to a broad panel of other cytokines on MP previously exposed to Lipopolysaccharide (LPS) stimulation in vitro. Results Immature peripheral blood CD14+ MPs were stimulated with LPS and 1 hour later with 42 separate soluble factors including cytokines, chemokines, interleukins, growth factors and IFNs. Gene expression profiling of MPs was analyzed 4 and 9 hours after cytokine stimulation. Four hours after stimulation, the transcriptional analysis of MPs revealed two main classes of cytokines: one associated with the alternative and the other with the classical pathway of MP activation without a clear polarization of type I IFNs effects. In contrast, after 9 hours of stimulation most type I IFN isoforms induced a characteristic and unique transcriptional pattern separate from other cytokines. These "signature" IFNs included; IFN-β, IFN-α2b/α2, IFN-αI, IFN-α2, IFN-αC, IFN-αJ1, IFN-αH2, and INF-α4B and induced the over-expression of 44 genes, all of which had known functional relationships with IFN such as myxovirus resistance (Mx)-1, Mx-2, and interferon-induced hepatitis C-associated microtubular aggregation protein. A second group of type I IFNs segregated separately and in closer association with the type II IFN-γ. The phylogenetic relationship of amino acid sequences among type I IFNs did not explain their sub-classification, although differences at positions 94 through 109 and 175 through 189 were present between the signature and other IFNs. Conclusion Seven IFN-α isoforms and IFN-β participate in the late phase polarization of MPs conditioned by LPS. This information broadens the previous view of the central role played by IFN-α in autoimmunity and tumor rejection by including and/or excluding an array of related factors likely to be heterogeneously expressed by distinct sub-populations of individuals in sickness or in response to biological therapy.</p
    corecore