17 research outputs found

    Impact of Marine Drugs on Animal Reproductive Processes

    Get PDF
    The discovery and description of bioactive substances from natural sources has been a research topic for the last 50 years. In this respect, marine animals have been used to extract many new compounds exerting different actions. Reproduction is a complex process whose main steps are the production and maturation of gametes, their activation, the fertilisation and the beginning of development. In the literature it has been shown that many substances extracted from marine organisms may have profound influence on the reproductive behaviour, function and reproductive strategies and survival of species. However, despite the central importance of reproduction and thus the maintenance of species, there are still few studies on how reproductive mechanisms are impacted by marine bioactive drugs. At present, studies in either marine and terrestrial animals have been particularly important in identifying what specific fine reproductive mechanisms are affected by marine-derived substances. In this review we describe the main steps of the biology of reproduction and the impact of substances from marine environment and organisms on the reproductive processes

    Thermostability of Firefly Luciferases Affects Efficiency of Detection by in Vivo Bioluminescence

    No full text
    Luciferase from the North American firefly ( Photinis pyralis ) is a useful reporter gene in vivo, allowing noninvasive imaging of tumor growth, metastasis, gene transfer, drug treatment, and gene expression. Luciferase is heat labile with an in vitro half-life of approximately 3 min at 37°C. We have characterized wild type and six thermostabilized mutant luciferases. In vitro, mutants showed half-lives between 2- and 25-fold higher than wild type. Luciferase transfected mammalian cells were used to determine in vivo half-lives following cycloheximide inhibition of de novo protein synthesis. This showed increased in vivo thermostability in both wild-type and mutant luciferases. This may be due to a variety of factors, including chaperone activity, as steady-state luciferase levels were reduced by geldanamycin, an Hsp90 inhibitor. Mice inoculated with tumor cells stably transfected with mutant or wild-type luciferases were imaged. Increased light production and sensitivity were observed in the tumors bearing thermostable luciferase. Thermostable proteins increase imaging sensitivity. Presumably, as more active protein accumulates, detection is possible from a smaller number of mutant transfected cells compared to wild-type transfected cells
    corecore