367 research outputs found

    Maxwell--Chern-Simons gauged non-relativistic O(3) model with self-dual vortices

    Get PDF
    A non-relativistic version of the 2+1 dimensional gauged Chern-Simons O(3) sigma model, augmented by a Maxwell term, is presented and shown to support topologically stable static self-dual vortices. Exactly like their counterparts of the ungauged model, these vortices are shown to exhibit Hall behaviour in their dynamics.Comment: 12 pages, LateX, to appear in Mod. Phys. Lett. 199

    Exact Self-dual Soliton Solutions in a Gauged O(3) Sigma Model with Anomalous Magnetic Moment Interaction

    Get PDF
    It is shown that a gauged nonlinear O(3)O(3) sigma model with anomalous magnetic moment interaction in 2+12+1 dimensions is exactly integrable for static, self-dual field configurations. The matter fields are exactly equivalent to those of the usual ungauged nonlinear O(3)O(3) sigma model. These static soliton solutions can be mapped into an Abelian purely magnetic vortex solutions through a suitable reduction of the non-Abelian gauge group. A relativistic Abelian model in 2+12+1 dimensions is also presented where these purely magnetic vortices can be realized.Comment: A discussion on CPNCP^N case has been made. New references have been added. To appear in Physics Letters B. RevTeX, 13 pages, no figur

    The SPHINX cosmological simulations of the first billion years: The impact of binary stars on reionization

    Get PDF
    We present the SPHINX suite of cosmological adaptive mesh refinement simulations, the first radiation-hydrodynamical simulations to simultaneously capture large-scale reionization and the escape of ionizing radiation from thousands of resolved galaxies. Our 55 and 1010 co-moving Mpc volumes resolve haloes down to the atomic cooling limit and model the inter-stellar medium with better than ≈10\approx10 pc resolution. The project has numerous goals in improving our understanding of reionization and making predictions for future observations. In this first paper we study how the inclusion of binary stars in computing stellar luminosities impacts reionization, compared to a model that includes only single stars. Owing to the suppression of galaxy growth via strong feedback, our galaxies are in good agreement with observational estimates of the galaxy luminosity function. We find that binaries have a significant impact on the timing of reionization: with binaries, our boxes are 99.999.9 percent ionized by volume at z≈7z\approx 7, while without them our volumes fail to reionize by z=6z=6. These results are robust to changes in volume size, resolution, and feedback efficiency. The escape of ionizing radiation from individual galaxies varies strongly and frequently. On average, binaries lead to escape fractions of ≈7−10\approx 7-10 percent, about 3.53.5 times higher than with single stars only. The higher escape fraction is a result of a shallower decline in ionizing luminosity with age, and is the primary reason for earlier reionization, although the higher integrated luminosity with binaries also plays a sub-dominant role

    Anyonic Bogomol'nyi Solitons in a Gauged O(3) Sigma Model

    Get PDF
    We introduce the self-dual abelian gauged O(3)O(3) sigma models where the Maxwell and Chern-Simons terms constitute the kinetic terms for the gauge field. These models have quite rich structures and various limits. Our models are found to exhibit both symmetric and broken phases of the gauge group. We discuss the pure Chern-Simons limit in some detail and study rotationally symmetric solitons.Comment: 14 pages, 6 Postscript figures uuencoded, written in REVTe

    Constraining stellar assembly and AGN feedback at the peak epoch of star formation

    Get PDF
    We study stellar assembly and feedback from active galactic nuclei (AGN) around the epoch of peak star formation (1<z<2), by comparing hydrodynamic simulations to rest-frame UV-optical galaxy colours from the Wide Field Camera 3 (WFC3) Early-Release Science (ERS) Programme. Our Adaptive Mesh Refinement simulations include metal-dependent radiative cooling, star formation, kinetic outflows due to supernova explosions, and feedback from supermassive black holes. Our model assumes that when gas accretes onto black holes, a fraction of the energy is used to form either thermal winds or sub-relativistic momentum-imparting collimated jets, depending on the accretion rate. We find that the predicted rest-frame UV-optical colours of galaxies in the model that includes AGN feedback is in broad agreement with the observed colours of the WFC3 ERS sample at 1<z<2. The predicted number of massive galaxies also matches well with observations in this redshift range. However, the massive galaxies are predicted to show higher levels of residual star formation activity than the observational estimates, suggesting the need for further suppression of star formation without significantly altering the stellar mass function. We discuss possible improvements, involving faster stellar assembly through enhanced star formation during galaxy mergers while star formation at the peak epoch is still modulated by the AGN feedback.Comment: 6 pages, 4 figures, accepted for publication in MNRAS Letter

    Probing cosmic dawn with emission lines: predicting infrared and nebular line emission for ALMA and JWST

    Get PDF
    Infrared and nebular lines provide some of our best probes of the physics regulating the properties of the interstellar medium (ISM) at high-redshift. However, interpreting the physical conditions of high-redshift galaxies directly from emission lines remains complicated due to inhomogeneities in temperature, density, metallicity, ionisation parameter, and spectral hardness. We present a new suite of cosmological, radiation-hydrodynamics simulations, each centred on a massive Lyman-break galaxy that resolves such properties in an inhomogeneous ISM. Many of the simulated systems exhibit transient but well defined gaseous disks that appear as velocity gradients in [CII]~158.6ÎŒ\mum emission. Spatial and spectral offsets between [CII]~158.6ÎŒ\mum and [OIII]~88.33ÎŒ\mum are common, but not ubiquitous, as each line probes a different phase of the ISM. These systems fall on the local [CII]-SFR relation, consistent with newer observations that question previously observed [CII]~158.6ÎŒ\mum deficits. Our galaxies are consistent with the nebular line properties of observed z∌2−3z\sim2-3 galaxies and reproduce offsets on the BPT and mass-excitation diagrams compared to local galaxies due to higher star formation rate (SFR), excitation, and specific-SFR, as well as harder spectra from young, metal-poor binaries. We predict that local calibrations between Hα\alpha and [OII]~3727A˚\AA luminosity and galaxy SFR apply up to z>10z>10, as do the local relations between certain strong line diagnostics (R23 and [OIII]~5007A˚\AA/HÎČ\beta) and galaxy metallicity. Our new simulations are well suited to interpret the observations of line emission from current (ALMA and HST) and upcoming facilities (JWST and ngVLA)

    New Methods for Identifying Lyman Continuum Leakers and Reionization-Epoch Analogues

    Get PDF
    Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∌ 3 and z ∌ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∌ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∌ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S II]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S II Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C II]158 ÎŒm and [O III]88 ÎŒm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe

    Population statistics of intermediate mass black holes in dwarf galaxies using the NewHorizon simulation

    Get PDF
    While it is well established that supermassive black holes (SMBHs) co-evolve with their host galaxy, it is currently less clear how lower mass black holes, so-called intermediate mass black holes (IMBHs), evolve within their dwarf galaxy hosts. In this paper, we present results on the evolution of a large sample of IMBHs from the NewHorizon simulation. We show that occupation fractions of IMBHs in dwarf galaxies are at least 50 percent for galaxies with stellar masses down to 1E6 Msun, but BH growth is very limited in dwarf galaxies. In NewHorizon, IMBH growth is somewhat more efficient at high redshift z = 3 but in general IMBH do not grow significantly until their host galaxy leaves the dwarf regime. As a result, NewHorizon under-predicts observed AGN luminosity function and AGN fractions. We show that the difficulties of IMBH to remain attached to the centres of their host galaxies plays an important role in limiting their mass growth, and that this dynamic evolution away from galactic centres becomes stronger at lower redshift.Comment: 15 pages, submitted to MNRA

    New methods for identifying Lyman continuum leakers and reionization-epoch analogues

    Get PDF
    Identifying low-redshift galaxies that emit Lyman Continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly "analogues" of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z∌3z\sim3 and z∌0z\sim0. We find that the simulated galaxies with high LyC escape fractions (fescf_{\rm esc}) often exhibit high O32 and populate the same regions of the R23-O32 plane as z∌3z\sim3 LyC leakers. However, we show that viewing angle, metallicity, and ionisation parameter can all impact where a galaxy resides on the O32-fescf_{\rm esc} plane. Based on emission line diagnostics and how they correlate with fescf_{\rm esc}, lower-metallicity LyC leakers at z∌3z\sim3 appear to be good analogues of reionization-era galaxies. In contrast, local [SII]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the SII-BPT diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using IR and nebular emission lines. We show that our model using only [CII]158ÎŒm_{\rm 158\mu m} and [OIII]88ÎŒm_{\rm 88\mu m} can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS1149_JD1 at z=9.1z=9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe

    Tracing the sources of reionization in cosmological radiation hydrodynamics simulations

    Get PDF
    We use the photon flux and absorption tracer algorithm presented in Katz et al.~2018, to characterise the contribution of haloes of different mass and stars of different age and metallicity to the reionization of the Universe. We employ a suite of cosmological multifrequency radiation hydrodynamics AMR simulations that are carefully calibrated to reproduce a realistic reionization history and galaxy properties at z≄6z \geq 6. In our simulations, haloes with mass 109M⊙h−1<M<1010M⊙h−110^9{\rm M_{\odot}}h^{-1}<M<10^{10}{\rm M_{\odot}}h^{-1}, stars with metallicity 10−3Z⊙<Z<10−1.5Z⊙10^{-3}Z_{\odot}<Z<10^{-1.5}Z_{\odot}, and stars with age 3 Myr<t<10 Myr3\,{\rm Myr} < t < 10 \, {\rm Myr} dominate reionization by both mass and volume. We show that the sources that reionize most of the volume of the Universe by z=6z=6 are not necessarily the same sources that dominate the meta-galactic UV background at the same redshift. We further show that in our simulations, the contribution of each type of source to reionization is not uniform across different gas phases. The IGM, CGM, filaments, ISM, and rarefied supernova heated gas have all been photoionized by different classes of sources. Collisional ionisation contributes at both the lowest and highest densities. In the early stages of the formation of individual HII bubbles, reionization proceeds with the formation of concentric shells of gas ionised by different classes of sources, leading to large temperature variations as a function of galacto-centric radius. The temperature structure of individual HII bubbles may thus give insight into the star formation history of the galaxies acting as the first ionising sources. Our explorative simulations highlight how the complex nature of reionization can be better understood by using our photon tracer algorithm
    • 

    corecore