1,553 research outputs found

    Flexible protection for metal bellows

    Get PDF
    RTV silicone is used with a braided wire sheath surrounding the metal bellows in fluid transfer systems. It demonstrated best overall performance in flexibility and shock absorbing tests, high temperature, low temperature, and salt spray

    Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity

    Full text link
    We present a scheme for efficient state teleportation and entanglement swapping using a single quantum-dot spin in an optical microcavity based on giant circular birefringence. State teleportation or entanglement swapping is heralded by the sequential detection of two photons, and is finished after the spin measurement. The spin-cavity unit works as a complete Bell-state analyzer with a built-in spin memory allowing loss-resistant repeater operation. This device can work in both the weak coupling and the strong coupling regime, but high efficiencies and high fidelities are only achievable when the side leakage and cavity loss is low. We assess the feasibility of this device, and show it can be implemented with current technology. We also propose a spin manipulation method using single photons, which could be used to preserve the spin coherence via spin echo techniques.Comment: The manuscript is extended, including BSA fidelity, efficiency, and a compatible scheme for spin manipulations and spin echoes to prolong the spin coherenc

    Squeezed-state generation in optical bistability

    Get PDF
    Experiments to generate squeezed states of light are described for a collection of two-level atoms within a high-finesse cavity. The investigation is conducted in a regime for which the weak-field coupling of atoms to the cavity mode produces a splitting in the normal mode structure of the atom-field system that is large compared with the atomic linewidth. Reductions in photocurrent noise of 30% (-1.55 dB) below the noise level set by the vacuum state of the field are observed in a balanced homodyne detector. A degree of squeezing of approximately 50% is inferred for the field state in the absence of propagation and detection losses. The observed spectrum of squeezing extends over a very broad range of frequencies (~±75 MHz), with the frequency of best squeezing corresponding to an offset from the optical carrier given by the normal mode splitting

    Quantum state transfer between motion and light

    Get PDF
    We describe schemes for transferring quantum states between light fields and the motion of a trapped atom. Coupling between the motion and the light is achieved via Raman transitions driven by a laser field and the quantized field of a high-finesse microscopic cavity mode. By cascading two such systems and tailoring laser field pulses, we show that it is possible to transfer an arbitrary motional state of one atom to a second atom at a spatially distant site.Comment: 10 pages, RevTex, 6 figures, to appear in Journal of Optics B: Quantum and Semiclassical Optic

    Mechanical effects of optical resonators on driven trapped atoms: Ground state cooling in a high finesse cavity

    Get PDF
    We investigate theoretically the mechanical effects of light on atoms trapped by an external potential, whose dipole transition couples to the mode of an optical resonator and is driven by a laser. We derive an analytical expression for the quantum center-of-mass dynamics, which is valid in presence of a tight external potential. This equation has broad validity and allows for a transparent interpretation of the individual scattering processes leading to cooling. We show that the dynamics are a competition of the mechanical effects of the cavity and of the laser photons, which may mutually interfere. We focus onto the good-cavity limit and identify novel cooling schemes, which are based on quantum interference effects and lead to efficient ground state cooling in experimentally accessible parameter regimes.Comment: 17 pages, 6 figure

    Entanglement of formation for symmetric Gaussian states

    Full text link
    We show that for a fixed amount of entanglement, two-mode squeezed states are those that maximize Einstein-Podolsky-Rosen-like correlations. We use this fact to determine the entanglement of formation for all symmetric Gaussian states corresponding to two modes. This is the first instance in which this measure has been determined for genuine continuous variable systems.Comment: 4 pages, revtex

    Characterization of high finesse mirrors: loss, phase shifts and mode structure in an optical cavity

    Get PDF
    An extensive characterization of high finesse optical cavities used in cavity QED experiments is described. Different techniques in the measurement of the loss and phase shifts associated with the mirror coatings are discussed and their agreement shown. Issues of cavity field mode structure supported by the dielectric coatings are related to our effort to achieve the strongest possible coupling between an atom and the cavity.Comment: 8 pages, 4 figure

    Compact Source of EPR Entanglement and Squeezing at Very Low Noise Frequencies

    Get PDF
    We report on the experimental demonstration of strong quadrature EPR entanglement and squeezing at very low noise sideband frequencies produced by a single type-II, self-phase-locked, frequency degenerate optical parametric oscillator below threshold. The generated two-mode squeezed vacuum state is preserved for noise frequencies as low as 50 kHz. Designing simple setups able to generate non-classical states of light in the kHz regime is a key challenge for high sensitivity detection of ultra-weak physical effects such as gravitational wave or small beam displacement

    Generation of Superposition Spin States in an Atomic Ensemble

    Full text link
    A method for generating a mesoscopic superposition state of the collective spin variable of a gas of atoms is proposed. The state consists of a superposition of the atomic spins pointing in two slightly different directions. It is obtained by using off resonant light to carry out Quantum Non Demolition Measurements of the spins. The relevant experimental conditions, which require very dense atomic samples, can be realized with presently available techniques. Long-lived atomic superposition states may become useful as an off-line resource for quantum computing with otherwise linear operations.Comment: 5 pages, 2 figures, accepted in Phys. Rev. Let

    Report of the ultraviolet and visible sensors panel

    Get PDF
    In order to meet the science objectives of the Astrotech 21 mission set the Ultraviolet (UV) and Visible Sensors Panel made a number of recommendations. In the UV wavelength range of 0.01 to 0.3 micro-m the focus is on the need for large format high quantum efficiency, radiation hard 'solar-blind' detectors. Options recommended for support include Si and non-Si charge coupled devices (CCDs) as well as photocathodes with improved microchannel plate readouts. For the 0.3 to 0.9 micro-m range, it was felt that Si CCDs offer the best option for high quantum efficiencies at these wavelengths. In the 0.9 to 2.5 micro-m the panel recommended support for the investigation of monolithic arrays. Finally, the panel noted that the implementation of very large arrays will require new data transmission, data recording, and data handling technologies
    • …
    corecore