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We investigate theoretically the mechanical effects of light on atoms trapped by an external potential, whose
dipole transition couples to the mode of an optical resonator and is driven by a laser. We derive an analytical
expression for the quantum center-of-mass dynamics, which is valid in presence of a tight external potential.
This equation has broad validity and allows for a transparent interpretation of the individual scattering pro-
cesses leading to cooling. We show that the dynamics is a competition of the mechanical effects of the cavity
and of the laser photons, which may mutually interfere. We focus on the good-cavity limit and identify novel
cooling schemes, which are based on quantum interference effects and lead to efficient ground-state cooling in
experimentally accessible parameter regimes.
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I. INTRODUCTION

Atom cooling by photon scattering is achieved by enhanc-
ing the rate of scattering processes that dissipate motional
energy, thereby exploiting the conservation of internal and
mechanical energy in the interaction between atoms and
electromagnetic field �1�. The atomic scattering cross section
can be significantly modified by the coupling to an optical
resonator, which acts both on the internal and on the external
degrees of freedom. Hence, the scattering properties can be
tailored, allowing one to achieve efficient cooling also for
atoms and molecules which may not offer a convenient con-
figuration in free space �2,3�. This principle is at the basis of
cooling by means of an optical resonator. Indeed, the me-
chanical effects on atoms coupled to an optical resonator are
the object of several experimental �4–12� and theoretical
�3,13–22� investigations, which aim at developing a system-
atic understanding of these complex dynamics both for its
fundamental aspects and for the perspective of a high degree
of control of complex systems with scalable number of de-
grees of freedom.

In this work we investigate the cooling dynamics of atoms
inside optical resonators, when their center-of-mass motion
is tightly confined by an external potential, like, for instance,
a dipole �7,23� or an ion trap �11,24–26�. We consider the
situation where an atomic optical dipole transition is driven
by a laser and by a cavity resonator, as sketched in Fig. 1,
and discuss in detail the results presented in �27�. In particu-
lar, we show the detailed derivation of the rate equation dis-
cussed in �27�. This equation has broad validity, which is
supported by numerical checks, and allows for a transparent
interpretation of the individual scattering processes leading
to cooling. Moreover, in the corresponding parameter re-
gimes it reproduces the results reported in �13,15�.

In this paper we mostly focus on the good-cavity limit. In
this regime we discuss when efficient cooling into the poten-
tial ground state can be achieved. In particular, we show that
in experimentally accessible parameter regimes one may ob-
tain almost unit ground-state occupation, even when the

natural linewidth of the dipole transition would not allow for
ground-state cooling in free space. Efficient ground-state
cooling is often found by exploiting interference effects, aris-
ing from phase correlation between the laser and field scat-
tered by the atom into the resonator. Most of these interfer-
ence effects are due to the discrete nature of the spectrum of
the center-of-mass motion, which is trapped by a harmonic
potential. Hence, the dynamics here studied differs substan-
tially from that of the cooling of free atoms inside cavities
�3,14,17–19�. Such interference effects are at the basis of
novel cooling schemes, some of which have been identified
in �27� and which are discussed in detail in the present work.

This article is organized as follows. In Sec. II some pre-
liminary considerations are made. In Sec. III the model is
introduced and the basic equations for the motion are ob-
tained. In Sec. IV we discuss the dynamics of cooling from
the rate equation we obtain and review previous results pre-
sented in the literature. In Sec. V novel cooling schemes are

FIG. 1. An atom is confined by an harmonic potential of fre-
quency � inside an optical resonator. A mode of the resonator
couples with strength g̃ to the dipole, which is driven transversally
by a laser at Rabi frequency �. The system dissipates by spontane-
ous emission of the atomic excited state at rate � and by cavity
decay at rate �. The other parameters are discussed in Sec. III.
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presented, whose dynamics are due to quantum correlations
which are established in the good cavity limit. In Sec. VI the
results are reported: The cooling efficiencies in the various
parameter regimes are discussed and compared. In Sec. VII
the conclusions are drawn. The Appendixes report detailed
calculations at the basis of the equations derived in Secs.
III–V.

II. MECHANICAL EFFECTS OF CAVITY AND LASER ON
THE ATOMIC MOTION

In this section we make some physical considerations, in
order to provide insight into the results presented in the rest
of the paper. The scattering cross section of the bare atom is
usually very informative about the cooling process �28�.
When the atomic transition is driven in saturation, this analy-
sis is more conveniently done in the dressed-state picture
�19,29,30�. For this purpose, we first assume that the atom is
fixed at the position x, such that the coupling constant to the
cavity mode is g̃=g�x�. The dipole level scheme and the
relevant parameters are shown in Fig. 2. We denote by �g ,nc�
and �e ,nc� the states of the system, where �g�, �e� are the
ground and excited states of the atomic dipole and �nc� the
number of photons of the cavity mode. In the situation in
which the atom is strongly coupled to the cavity mode and
weakly pumped by the laser, the states which are relevantly
involved into the dynamics are �g ,0c� and the dressed states

� + � = sin ��g,1c� + cos ��e,0c� , �1�

�− � = cos ��g,1c� − sin ��e,0c� , �2�

with

tan � = g̃/�− �c/2 + �g̃2 + �c
2/4�

and �c the detuning between cavity mode and atom. Setting
the energy of �g ,0c� at zero, the frequencies of the states ���
are

�± = − �c/2 ± �g̃2 + �c
2/4 �3�

and the respective linewidths are �+�� sin2 �+� cos2 � and
�−�� cos2 �+� sin2 �, where � is the linewidth of the di-
pole transition and � the cavity decay rate. The weak laser
probe couples the dressed states �g ,0c� and �e ,0c�.

Signatures of the dressed states are, for instance, the reso-
nances in the rate of photon scattering as obtained by scan-
ning the probe laser through atomic resonance. This situation
is depicted in Fig. 3. Here, the curve has been evaluated for
a good resonator—namely, �	�, g̃ and �c�0. For these
parameters the linewidth of one of the two resonances is
narrower than the natural linewidth of the dipole. Moreover,
when the probe laser is resonant with the cavity mode, the
spectrum exhibits a minimum, which reaches zero for �=0;
namely, no photons are scattered. This behavior is due to an
interference effect between laser and cavity resonator, such
that there is no radiation scattered by the atom, as it is at a
point where the two fields, laser and cavity, mutually cancel
�31–33�.

We now consider the center-of-mass motion of an atom in
a harmonic oscillator and first assume that the mechanical
effects are only due to the laser, while the cavity wave vector
is orthogonal to the motional axis. In this regime, the motion
gives rise to a modulation of the laser frequency at the trap
frequency �. In the regime of strong confinement �Lamb-
Dicke regime� this gives rise to two sidebands of the
carrier—i.e., the laser frequency. The carrier and sideband
positions are indicated by the vertical bars in Fig. 3 in the
reference frame of the atom. The central bar is the carrier.
The bar at the right �left� of the carrier corresponds to a
transition which lowers �raises� the atomic vibrational exci-
tation by one phonon—namely, the so-called red �blue� side-
band transition. These two components are out of phase with
respect to the carrier. In the limit in which the atomic motion
weakly perturbs the internal and cavity dynamics, the scat-
tering along the sidebands is proportional to the correspond-
ing value of the excitation spectrum. Cooling is thus ob-
tained by realizing a large gradient between scattering rates
along the sidebands. Figures 3�a� and 3�b� show two possible
scenarios, which are discussed in this paper. Case �a� corre-
sponds to use the narrow resonance for implementing side-

FIG. 2. Sketch of the internal levels �g� and �e� of the atomic
dipole transition, driven by a laser and a cavity mode with coupling
strengths g̃ and �, respectively. The arrows show the cavity and
laser frequency with respect to the dipole frequency. Here, � and 
c

are the detunings of atom and cavity, respectively, from the laser
frequency, and �c is the detuning of the atomic transition from the
cavity frequency. The frequencies of the atomic transition ��0�, of
the cavity mode ��c�, and of the laser field ��L� are indicated in the
vertical scale.

FIG. 3. Excitation spectrum as a function of the laser detuning �
in the reference frame of the atom. Here, g̃=0.5� and �=0.01�. In
�a� �c=−10� and �b� �c=1.2�. The vertical bars indicate the fre-
quency �0 of the carrier �central line� and of the red and blue
sideband transitions, �0+� and �0−�, respectively, when the laser
is set at �=�0 and the trap frequency �=0.2�. In �a� �0��c−�; in
�b� �0=�c—namely, cavity mode and laser are resonant. See text.
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band cooling with the dressed states �15�. This scenario is
obtained by choosing a large value of ��c� and setting the
detuning between the cavity and laser equal to the trap fre-
quency, such that the red sideband absorption falls at the
center of the narrow resonance. This case has been studied in
�15�. In case �b� a large gradient is achieved by exploiting the
interference profile arising when laser and cavity are reso-
nant.

The dressed-state picture, as obtained by neglecting the
motion of the atom, can be also applied to get some insight
into the cooling dynamics when cooling is due only to the
resonator forces or to both laser and resonator. Nevertheless,
it does not explain other cooling dynamics, which we discuss
in this article and which are due to correlations in the gradi-
ents of the fields over the atomic wave packet. At this pur-
pose one has to consider also the quantum motion.

Figure 4 summarizes the basic scattering processes deter-
mining the cooling dynamics in the basis �g ,0c ;n�, �± ;n�,
where n is the number of excitations of the center-of-mass
harmonic oscillator. The process shown in Fig. 4�a� describes
the absorption of a laser photon and spontaneous emission,
whereby the change in the center-of-mass state is due to the
recoil induced by the spontaneously emitted photon. The

scattering rate is scaled by the geometric factor � and is
found after averaging over the solid angle of photon emis-
sion into free space. This contribution is diffusive, as the
motion can be scattered into a higher or lower vibrational
state with probabilities depending on the overlap integrals
between the initial and final motional states after a photon
recoil. In Sec. V we discuss the parameter regime in which
this contribution can be suppressed by an interference effect
in the dressed states absorption.

The processes depicted in Figs. 4�b� and 4�c� describe
scattering of a laser photon by spontaneous emission where
the motion is changed by mechanical coupling to the laser
��b�� and to the cavity ��c�� field. Since the final state of the
two scattering processes is the same, they interfere. In addi-
tion, each term is composed of multiple excitation paths and
can vanish in some parameter regimes. In Sec. V we discuss
interference effects in these two terms.

The processes depicted in Figs. 4�d� and 4�e� describe the
scattering of a laser photon by cavity decay, where the mo-
tion is changed by mechanical coupling to the laser ��d�� and
to the cavity ��e�� field. The scattered photon is transmitted
through the cavity mirrors into the external modes, and
therefore these two processes do not interfere with the ones

FIG. 4. Scattering processes leading to a change of the vibrational number by one phonon. The states �g ,0c ;n�, �± ;n� are the cavity-atom
dressed states at phonon number n. Processes �a�, �b�, and �c� describe scattering of a laser photon by spontaneous emission. They prevail
in good resonators, for �	 g̃ ,�. Processes �d� and �e� describe scattering of a laser photon by cavity decay. They prevail in bad resonators,
for �	 g̃ ,�. The parameters �, c, and L emerge from the mechanical effects of light and are defined in Sec. III B.
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above discussed, but add up coherently with one another. In
Sec. IV C we discuss parameter regimes where interference
effects in these two terms relevantly affect the dynamics. The
general dynamics is a competition of all these processes and
will be discussed in detail in the following sections.

III. THE MODEL

A. Basic equations

We consider an atom of mass M, which is confined by a
harmonic potential of frequency � inside an optical resonator.
The relevant center-of-mass dynamics is along the x axis,
while the degrees of freedom of the transverse motion have
been traced out, assuming that the transverse confinement is
much steeper. Later on we discuss how the treatment can be
generalized to three-dimensional motion. The atom internal
degrees of freedom, which are relevant to the dynamics, are
the ground state �g� and the excited state �e�, constituting a
dipole transition at frequency �0 and linewidth �. The dipole
couples with a cavity mode at frequency �c and with a laser
at frequency �L, whose wave vectors kc and kL form the
angle �c and �L, respectively, with the x axis. The system is
sketched in Figs. 1 and 2. We denote by � the density matrix
for the atom and resonator degrees of freedom in the refer-
ence frame rotating at the laser frequency. The density matrix
� obeys the master equation

�

�t
� =

1

i�
�H,�� + Ls� + K� 	 L� , �4�

where L is the Liouvillian describing the total dynamics.
Here, the Hamiltonian H is

H = Hmec + Hat + Hcav + Hat-cav + HL, �5�

where the terms describing the coherent dynamics in absence
of coupling with the electromagnetic �e.m.� field are

Hmec =
p2

2M
+

1

2
M�2x2, �6�

Hat = − ���†� , �7�

Hcav = − �
ca
†a . �8�

Here, x and p are the position and momentum of the
center of mass; �= �g�
e�, and �† its adjoint; a and a† are the
annihilation and creation operators of a cavity photon;
�=�L−�0 and 
c=�L−�c are the detunings of the laser
from the dipole and from the cavity frequency, respectively,
such that

�c = � − 
c.

The terms

Hat-cav = �g cos�kx cos �c + ���a†� + a�†� , �9�

HL = ���eikx cos �L�† + H.c.� �10�

describe the radiative couplings of the dipole with the cavity
mode and laser, respectively, where g is the cavity-mode

vacuum Rabi frequency and � the Rabi frequency for the
coupling with the laser, � is a phase, and k is the modulus of
the wave vector ��kL���kc���0 /c=k�.

The superoperators K and Ls in Eq. �4� describe the cav-
ity decay and dipole spontaneous emission into the modes
external to the resonator, respectively, and are

K� =
�

2
�2a�a† − a†a� − �a†a� , �11�

Ls� =
�

2
�2��̃�† − �†�� − ��†�� , �12�

where � is the cavity decay rate due to the finite transmission
at the mirrors and

�̃ = �
−1

1

d cos �0N��0�e−ik cos �0x�eik cos �0x �13�

describes the events in which the atomic motion recoils by
emission of a photon at the angle �0 with the trap axis with
probability N��0�d cos �0. Note that N��0� must be evalu-
ated taking into account the geometry of the setup.

For later convenience we introduce the annihilation and
creation operators b and b† of a quantum of vibrational en-
ergy, such that

x = ��/2M��b† + b� , �14�

p = i��M�/2�b† − b� , �15�

and the Hamiltonian term �6� can be rewritten as

Hmec = ��b†b +
1

2
� . �16�

We denote by �n� the eigenstates of Hmec at the eigenvalue
�n+1/2��� and introduce the Lamb-Dicke parameter

� = k� �

2M�
, �17�

which scales the mechanical coupling of radiation with the
atomic motion.

B. Reduced equation for the center-of-mass dynamics in the
Lamb-Dicke limit

We assume the Lamb-Dicke regime—namely, the atom is
localized on a length scale which is much smaller than the
light wave length—and identify in the Lamb-Dicke param-
eter � the perturbative parameter, which allows us to treat
the coupling of the external degrees of freedom with the
cavity and the atom internal degrees of freedom in perturba-
tion theory �34,35�. We apply the formalism first applied in
�35� and then further developed in �36–38�. Below we sum-
marize some steps.

At zero order in the Lamb-Dicke parameter the center of
mass is decoupled from the internal and cavity degrees of
freedom. In fact, denoting by �L0=L��=0 the Liouvillian at
zeroth order in the expansion, this can be decomposed into
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the sum of a term acting over the external and over the cavity
and dipole degrees of freedom—namely,

L0 = L0E + L0I,

where

L0E� =
1

i�
�Hmec,�� , �18�

L0I� =
1

i�
�Hat + Hcav + H0at−cav + H0L,�� + K� + L0s�

�19�

and where the Hamiltonian interaction

H0at-cav = �g̃�a†� + a�†� , �20�

H0L = ����† + �� �21�

and the Liouvillian for the atomic spontaneous emission,

L0s� =
�

2
�2���† − �†�� − ��†�� , �22�

appear at zeroth order in the expansion in �. The term

g̃ = g cos � �23�

is the zeroth-order atom-cavity coupling strength.
The spectrum of L0 is �=�I+�E, where �I are the eigen-

values of L0I and �E are the eigenvalues of L0E. The station-
ary state is a right eigenstate at eigenvalue zero, as it fulfills
the secular equation L0�=0 �39�. The corresponding eigens-
pace is spanned, for instance, by the eigenvectors �n=�St
� �n�
n�, where �St fullfills the equation

L0I�St = 0,

while the operator �n�
n� is an eigenvector of the superopera-
tor L0E at eigenvalue �E=0. The corresponding eigenspace is
infinitely degenerate. We denote by P the projection operator
over the �=0 eigenspace, defined as

P� = �St � �
n=0

�

�n�
n�TrI�
n���n�� , �24�

where TrI is the trace over the dipole and cavity degrees of
freedom. At second order in � one gets a closed equation for
the center-of-mass dynamics of the form

d

dt
� = �2��S��� + D��b�b† − b†b��

+ �S�− �� + D��b†�b − bb†�� + H.c.� , �25�

where �=TrI�P�� is the density matrix for the center-of-
mass variables, obtained by tracing over the dipole and cav-
ity degrees of freedom, and where the coefficients are given
by

D = �
�

2
TrI��†��St� , �26�

S��� =
1

�2�
0

�

d�ei��TrI�V1eL0I�V1�ss�

= − TrI�V1�L0I + i��−1V1�SS� . �27�

In Eq. �26� we used

� = �
−1

1

d cos �0 cos2 �0N�cos �0� ,

which gives the angular dispersion of the atom momentum
due to the spontaneous emission of photons. The operator V1
in Eq. �27� is given by

V1 = LVL + cVc, �28�

where

VL = i����† − �� , �29�

Vc = − �g̃�a�† + a†�� �30�

describe, respectively, the mechanical effects of the drive and
of the cavity at first order in �, with the two coefficients

L = cos �L, �31�

c = cos �c tan � , �32�

which depend on the geometry of the setup. The operator
�28� is the gradient of the atom-field interaction at the center
of the trap and corresponds to the mechanical force in the
semiclassical limit �40�.

C. Rate equation

From Eq. �25� one can directly derive the rate equation
for the occupation probability pn= 
n���n� of the phonon
number state �n�—namely,

d

dt
pn = �2��n + 1�A−pn+1 − ��n + 1�A+ + nA−�pn + nA+pn−1� ,

�33�

where

A± = 2 Re�S���� + D� �34�

are the rate of heating �A+� and cooling �A−�. The solution of
this type of equation is well known �34�. The average pho-
non number obeys the equation


ṅ� = − �2�A− − A+�
n� + �2A+, �35�

which, for A−�A+, has solution


n�t = 
n�0e−Wt + 
n�St�1 − e−Wt� . �36�

Here, 
n�0 is the initial average phonon number and


n�St =
A+

A− − A+
�37�

is the average phonon number at steady state, while

W = �2�A− − A+� �38�

is the cooling rate.
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D. Discussion

In Eq. �33� the internal dynamics enters through the coef-
ficients S��� and D, which determine the rates �34�. The
function S��� is the spectrum of the fluctuations of the radia-
tive force on the atom—namely, the Fourier transform of the
autocorrelation function of the operator V1 in Eq. �28�. For
the atom coupled to an optical resonator and driven transver-
sally by a laser, we use the definition �28� in Eq. �27�, and
obtain

S��� = L
2SL��� + c

2Sc��� + LcScL��� .

Here,

SL = − TrI�VL�L0I + i��−1VL�St�

is the contribution of the mechanical effect due to the laser,
the term

Sc = − TrI�Vc�L0I + i��−1Vc�St�

the contribution of the mechanical effect due to the resonator,
and

ScL = − TrI�Vc�L0I + i��−1VL�St� − TrI�VL�L0I + i��−1Vc�St�

the contribution due to correlations between the mechanical
effects of laser and resonator. Depending on the geometry of
the setup, one term can be dominant over the others.

The coefficient D, Eq. �26�, gives the diffusion in the
dynamics of the center-of-mass motion. It is the product of
two terms: the spontaneous emission rate of the excited state
into the modes of the e.m. field and the stationary excited-
state population, which is determined by the overall dynam-
ics at zeroth order in the Lamb-Dicke expansion.

IV. CAVITY COOLING OF TRAPPED ATOMS

A. Explicit form of the rate equation for cooling

An analytical form for the rates entering Eq. �33� can be
derived in the limit of a weak laser drive. The main steps of
the derivation are reported in Appendix A. In this limit the
heating and cooling rates take the form

A± = ���TS�2 + ��LTL
�,± + cTc

�,±�2 + ��LTL
�,± + cTc

�,±�2,

�39�

with

TS = �

c + i�/2

f�0�
, �40�

TL
�,± = i�

�
c � � + i�/2�
f����

, �41�

TL
�,± = i�

g̃

f����
, �42�

Tc
�,± = − �

g̃2�2
c � � + i��
f�0�f����

, �43�

Tc
�,± = − �

g̃��� � � + i�/2��
c + i�/2� + g̃2�
f�0�f����

, �44�

and

f�x� = �x + 
c + i�/2��x + � + i�/2� − g̃2. �45�

The analytic form of Eqs. �39�–�44� allows for a more trans-
parent reading of these complex dynamics, which can be
mapped back to the processes shown in Fig. 4. The rates are
the incoherent sum of three contributions: The first term
���TS�2 describes a change in the motional state by mechani-
cal coupling to the modes external to the cavity—namely, by
the recoil associated with the spontaneous emission of a pho-
ton. It corresponds to the process depicted in Fig. 4�a� and
determines the diffusion coefficient through the relation

D = ���TS�2/2. �46�

The second term ��LTL
�,±+cTc

�,±�2 describes scattering
of a laser photon into the external modes by mechanical cou-
pling to the laser �TL� and to the cavity �Tc� field. The two
transition amplitudes correspond to the processes depicted in
Figs. 4�b� and 4�c�, respectively. They add up coherently and
may interfere. Note that these processes, together with the
diffusive process, are dominant for �	�.

The third term ��LTL
�,±+cTc

�,±�2 describes scattering of a
laser photon into the external modes of the electromagnetic
field by cavity decay. The two amplitudes, appearing in this
term, correspond to the processes depicted in Figs. 4�d� and
4�e�, respectively. Also in this case they add up coherently
and may interfere. This term is dominant for ���.

Equation �39� contains the basic features of the dynamics
of cavity cooling of trapped atoms. It has been derived �i� in
the Lamb-Dicke regime, �ii� assuming that the electronic
states are bound by the same center-of-mass potential, and
�iii� in the limit in which the laser is a weak perturbation to
atom and cavity dynamics. Moreover, it has been derived for
one-dimensional motion. However, since at second order in
� the rate equations for the three directions of oscillation
decouple in an anisotropic trap, it can be generalized to
three-dimensional motion as it holds for any geometry of the
setup. Below we show that this equation reproduces and gen-
eralizes results found in some particular regimes �13,15�.
Moreover, Eq. �39� allows one to identify new parameter
regimes characterized by novel dynamics that lead to effi-
cient cooling. Some of these dynamics will be presented in
Sec. V.

B. Cooling in the bad-cavity limit

Cooling in the bad-cavity limit, as discussed in �13�, is
recovered by maximizing the ratio A− /A+ in the limit in
which spontaneous emission is negligible. In Eq. �39� we set
�=0 and take �
c���. The equivalence with the cooling and
heating rates reported in �13� is evident by using the defini-

tions 
̃= g̃2�c / ��2 /4+�c
2� and �̃= g̃2� / ��2 /4+�c

2�, and im-
posing c=L=1 �namely, the cavity axes and the laser are
parallel to the atomic motion�. Below we use this notation
but keep L and c, thereby allowing for a more general
geometry. From Eq. �39� we find
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A± �
�2�̃

��� − 
̃�2 + �̃2/4�
�a±�2,

a± = c�1 +
2�
̃ − i�̃/2�

� − 
̃ � � + i�̃/2
� − iL

� − 
̃ + i�̃/2

� − 
̃ � � + i�̃/2
.

�47�

Here, two processes interfere—namely, the process in which
the vibrational number changes by one phonon by absorbing
a laser photon, depicted in Fig. 4�d� and described by the
term TL

� in Eq. �39�, and the process in which the vibrational
number changes by one phonon by scattering a cavity pho-
ton, depicted in Fig. 4�e� and described by the term Tc

� in Eq.
�39�. These dynamics are due to correlations between the
mechanical effects of laser and the cavity, and they depend
critically on the geometric setup, as is visible from Eq. �47�.

C. Sideband cooling in the good-cavity limit

We consider the case where the atom is far-off resonance
from the cavity and laser, ����� ,g ,�. At leading order in �
the rates of heating and cooling take the form

A± =
�2

�2��� + L
2�� +

g̃2��L
2 + c

2�
�2/4 + �
c � ��2� + O�1/�3� .

�48�

In this parameter regime there is no relevant contribution to
the mechanical effects from correlations between the cavity
and laser dipole force. Cooling is found for 
c�0, and the
corresponding average phonon number at steady state is


n�St
��� =

�2

4
+ �
c + ��2

4�− 
c��
�1 + B� , �49�

with

B =
�

g̃2�
 � + L

2

L
2 + c

2��2

4
+ �
c − ��2� . �50�

In the following we do not discuss the solutions leading to
Doppler cooling and focus on the parameter regimes that
lead to ground-state cooling, assuming ���.

For �	�, Eq. �49� reaches the minimum value at

c=−�,

�
n�St
����
c=−� =

�2

16�2 +
1

4C1
 � + L

2

L
2 + c

2�1 +
�2

16�2� , �51�

where

C1 = g̃2/�� �52�

is the one-atom cooperativity �41�. The corresponding cool-
ing rate is

�W�
c=−� = �24C1�L
2 + c

2�
�2

�2 �1 −
1

1 + �4�/��2� .

�53�

Therefore, large ground-state populations and large cooling
rates can be achieved for ��� and C1�1—namely, for
good cavities and in the limit in which the cavity linewidth is
much smaller than the trap frequency.

Insight into these results can be found by using the
dressed-state picture discussed in Sec. II: For �	�, large �,
and 
c=−� the excitation spectrum corresponds to the situa-
tion depicted in Fig. 3�a�, where the the red sideband transi-
tion is resonant with the narrow resonance at frequency �+
=�, while the carrier and the blue sideband are driven far-off
resonance. Hence, this condition is analogous to sideband
cooling, whereby now the narrow resonance is the dressed
state of the system composed by cavity and atom.

The cavity loss rate sets the lower limit to the width of the
narrow resonance, on which sideband cooling is made, and
thus to the efficiency of the process, as is visible in Eqs. �51�
and �53�. From these equations it is also visible that large
cooperativities ensure better efficiencies.

The results reported in this section have been obtained
from the rate equation �33� with the coefficients, Eqs.
�39�–�44�, expanded at leading order in 1/�. Such an expan-
sion is valid in the limit where the detuning between atom
and cavity �respectively, laser� is the largest physical param-
eter. We remark that Eq. �51� is in agreement with the result
reported in �15� in the corresponding parameter regime,
whereby the different numerical factors, as well as the de-
pendence on the angles, are due to the different laser con-
figuration there considered.

V. COOLING BY QUANTUM CORRELATIONS IN THE
GOOD-CAVITY LIMIT

In this section we present and discuss novel cooling dy-
namics based on quantum interference effects, which is
dominant in the good-cavity limit, when

� 	 �,�, g̃ .

In this regime we focus on the first two terms of the rates
�39�, corresponding to the processes in Figs. 4�a�–4�c� and
treat cavity decay, giving rise to the processes depicted in
Figs. 4�d� and 4�e�, as small perturbations. In the following
we assume that

� �
�

2
�2n + 1�;

namely, the coupling to the cavity mode does not vanish at
zeroth order in the Lamb-Dicke expansion and it is given by
Eq. �23�. Comparisons among the efficiencies of the cooling
schemes are presented in Sec. VI.

A. Discussion

Efficient cooling is achieved by maximizing the rate A−
together with the ratio A− /A+. In this way, ideally one maxi-
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mizes the cooling rate, Eq. �38�, and minimizes the average
number of phonons at steady state, Eq. �37�. In general, by
inspection of Eqs. �39�–�44� one can identify a strategy for
maximizing A− /A+, consisting in identifying the parameters
such that the heating and/or diffusion processes vanish. In
this regime, the optimal parameters that maximize A− are
found whenever

Re�f���� = 0, �54�

thereby minimizing the denominator of A−. Physically, this
corresponds to set the red sideband transition at a resonance
of the atom-cavity system. This strategy is effective when the
linewidth of the corresponding resonance is smaller than the
trap frequency. Equation �54� leads to a condition that relates
the cavity detuning 
c with the atom detuning �—namely,

�opt�
c� 	
g̃2 + ��/4


c + �
− � , �55�

where we assume fixed couplings and decay rates, hence also
a fixed cooperativity. For instance, in the case of sideband
cooling discussed in Sec. IV C, the optimal cooling condi-
tions are reached for 
c=−�, corresponding to the solution of
Eq. �54� for �→�. In this limit, the linewidth of the dressed-
state resonance which is used for cooling is infinitely small,
and the steady-state occupation vanishes accordingly.

Below we discuss various regimes where ground-state
cooling is efficient and which may be identified, for the cor-
responding parameter regimes, with an approximate solution
of Eq. �54�.

B. Suppression of diffusion by quantum interference

In this section we discuss a cooling scheme based on the
suppression of diffusion by quantum interference. The cool-
ing dynamics is based on the suppression of the carrier tran-
sition and can be understood with the dressed-state picture.
As discussed in Sec. II, the carrier transition can vanish in
the regime in which the laser and cavity are resonant. The
sidebands due to the harmonic motion, however, are weak
perturbations in opposition of phase with respect to the car-
rier. Thus, they give rise to photon scattering with probability
given by the corresponding value of the excitation spectrum,
depicted in Fig. 3�b� for some parameter regime. The cooling
strategy is thus to enhance the red sideband over the blue
sideband absorption, thereby profiting of the suppression of
carrier excitations and thus of diffusion. This idea is reminis-
cent of cooling mechanisms based on quantum interference
between atomic levels �30,37�, whereby here the suppression
of the carrier transition is due to the destructive interference
between the laser and light elastically scattered into the reso-
nator by the atom.

Diffusion is suppressed when TS=0 in Eq. �39�, leading to
the vanishing of the diffusion coefficient D, Eq. �26�. From
Eq. �39� this occurs when 
c=0 and, ideally, for �=0. Let us
first consider the ideal condition of a lossless resonator. In
this case, for 
c=0 the steady-state average phonon number
is given by


n�St
�0� =

���� + �� − g̃2�2 + �2�2/4

4���g̃2 − �2�
. �56�

Cooling is achieved when either the relations ��0 and
g̃�� or the relations ��0 and g̃�� are fulfilled. The mini-
mum for 
n�St

�0� is obtained when �=�opt�
c=0�; see Eq. �55�.
For these values the minimum number of phonon at steady
state is

�
n�St
�0���opt�0� =

�2

16�opt�0�2 =
�2�2

16�g̃2 − �2�2 , �57�

with the corresponding cooling rate

�W��opt�0� = 4�2�L
2 + c

2�
�2

�
1 −

1

1 + �4�opt�0�/��2� .

�58�

Therefore, ground-state cooling—namely, 
n�St
�0�	1—is

found when �=�opt and ����� or, equivalently, for
�g̃2 /�−����. This condition can be fulfilled �i� when ���
and �ii� when g̃2���, which is most interesting as it can
give ground-state cooling even when �	�. Below we dis-
cuss these two cases in detail.

Case �i� corresponds to the so-called strong confinement
regime �28�—namely, when the linewidth of the dipole tran-
sition is smaller than the trap frequency. In this case sideband
cooling is efficient in free space �i.e., in the absence of the
resonator�. Like for sideband cooling in free space, the
implementation inside a cavity resonator requires �=−�,
leading to the final occupation 
n�St

�0���2 /16�2.
Case �ii� can be fulfilled in the so-called weak confine-

ment regime �28�—namely, when the linewidth of the dipole
transition is much larger than the trap frequency. The result
�57� shows that ground-state cooling can be efficiently
achieved. This is to our knowledge a novel regime. Here,
�� g̃2 /�, so that we can rewrite the cooling limit as

�
n�St
�0���opt�0� � �2�2/16g̃4. �59�

We now discuss how the efficiency is modified for 
c=0
but � finite. At first order in � the diffusion coefficient
D=0. In fact, D=O��2�, being the stationary population of
the excited state of second order in � in this regime �32,33�.
At first order in this expansion the steady-state average pho-
non number is


n�St = 
n�St
�0��1 + F� , �60�

where the term

F =
�2

�2 C1
�

2
A− − 2

�

�

A−

A− − A+

Lc

L
2 + c

2 �61�

is the correction at first order in �, C1 is the one-atom coop-
erativity defined in Eq. �52�, and

A± =
�2�

���� � �� − g̃2�2 + �2�2/4
. �62�

Cavity decay increases the linewidth of the dressed-state
resonances and is thus detrimental. Nevertheless, for high
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cooperativities the result we find in Eq. �60� approaches the
result of the ideal case, Eq. �59�. In particular, for g̃�� its
value at �=�opt�0� takes the simple form

�
n�St��opt�0� � �
n�St
�0���opt�0� +

1

8C1
, �63�

showing that the corrections scale with 1/C1.
It must be remarked that the equations presented in this

section have been obtained from Eqs. �39� in the limit of
weak coupling. Nevertheless, they are also valid when the
dipole is driven by a saturating laser field. In that case, at
zeroth order in the Lamb-Dicke expansion the atom is in the
ground state and the cavity in a coherent state with amplitude
�c=−� / g̃, such that the steady state at zeroth order is �31�

�0St = �g,�c�
g,�c� . �64�

The derivation of the rate equation of cooling, obtained by
making no assumption regarding the strength of the laser
intensity, is reported in Appendix B. The result agrees with
the results reported in this section, which have been evalu-
ated from Eqs. �39� under the assumption of weak laser
fields. This agreement is not a casuality: In fact, when the
conditions for this interference effect are fulfilled, the atom is
driven well below saturation even for strong laser and cavity
fields, since they mutually cancel at the atomic position
�32,33�. Nevertheless, the sideband transitions take place
since they are out of phase with respect to the carrier.

C. Suppression of heating by quantum interference

In this section we discuss a cooling scheme based on the
suppression of heating processes by quantum interference.
This interference phenomenon is found in the good-cavity
limit and corresponds to the situation in which the heating
processes depicted in Figs. 4�b� and 4�c� cancel out. The
corresponding parameters are identified in Eq. �39� by im-
posing the condition LTL

�,++cTc
�,+=0. This condition can

be fulfilled, for instance, when L=0—namely, when the la-
ser is orthogonal to the motional axis and therefore exerts no
force—and Tc

�,+=0—namely, when the transitions to the blue
sideband induced by the mechanical effects of the resonator
vanish. Below we discuss this particular case.

We assume L=0. Condition Tc
�,+=0 is fulfilled when


c=� /2 and, ideally, �=0. In this limit A+=���TS�2 and the
average phonon number at steady state is


n�St
�0� = �

9�2�2/16 + �g̃2 − 3��� + ��/2�2

16g̃4c
2 . �65�

It reaches a minimum for �=�opt�� /2�—namely, �opt�� /2�
=2g̃2 /3�−�—which has the form

�
n�St
�0���opt��/2� =

9�

16c
2

�2�2

16g̃4 , �66�

with the corresponding cooling rate

�W��opt��/2� = 16�2�2

�

c
2

�1 + 3�2/4g̃2�2 + �3��/8g̃2�2 .

�67�

To our knowledge, this is a novel cooling regime. Insight
into this dynamics cannot be simply gained by inspection of
the excitation rate at zeroth order in the Lamb-Dicke param-
eter. In fact, the disappearance of the blue sideband transition
is due to a quantum interference effect between the paths of
mechanical excitation driven by the resonator. Comparing
this case with cooling by suppression of diffusion �see Sec.
V B�, one finds that for 
c=� /2 one can reach lower tem-
peratures in a faster time, as is evident from a comparison of
Eqs. �66� and �67� with Eqs. �58� and �63� and with the
results reported in Sec. IV C.

A finite, but small, value of � leads to the corrected aver-
age excitation


n�St = 
n�St
�0��1 + �F� + �G , �68�

where

F =
1

2
� g̃2�

9�2�2/16 + �g̃2 − 3��� + ��/2�2

+
�2/4 + �� + ��2

g̃2�
−

2�� + ��
��

� , �69�

G =
9�2�2/16 + �g̃2 − 3��� + ��/2�2

4g̃2��2 �70�

are the corrections at first order in �. They lower the effi-
ciency of the mechanism. In particular, the optimal final oc-
cupation number becomes

�
n�St��opt��/2� = 1 +
1

8C1
��
n�St

�0���opt��/2� +
�/c

2 + 9

64C1
,

�71�

while the corrections to the cooling rate scale with 1/C1.
Therefore, for large cooperativities this interference effect
is relevant to the cooling dynamics. We remark that as for

c=� /2 the heating transition vanishes; similarly for

c=−� /2, the cooling transition cancels out.

D. Suppression of diffusion and heating by quantum
interference

We finally discuss a cooling scheme based on the suppres-
sion of both diffusion and heating transitions by quantum
interference. Let us first consider suppression of the carrier
excitation, which leads to a vanishing diffusion coefficient.
This can be achieved by using a standing-wave drive, such
that the trap center is at one of its nodes. Therefore, at zeroth
order in the Lamb-Dicke expansion the atom does not scatter
any photon and the cavity is thus empty. Photon scattering
originates from the dynamics due to the finite size of the
atomic wave packet, and it is thus a process of second order
in the Lamb-Dicke expansion. In order to investigate these
dynamics, we evaluate the heating and cooling rates entering
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the rate equation �33� by considering a new Hamiltonian,
which is given by the operator �5� with the new laser-dipole
coupling:

HL = �� cos�kx cos �L + �L���† + �� . �72�

The condition for which the trap is at a node of the laser
standing wave corresponds to choosing

�L = �/2.

For this value, the interaction with the laser vanishes at ze-
roth order in the Lamb-Dicke expansion and the steady state
is the empty cavity field and the atom in the ground state—
namely, �St� = �g ,0c�
g ,0c�. Note that no assumption has been
made on the value of the Rabi frequency �. By expanding
Eq. �72� at first order in the Lamb-Dicke parameter, we ob-
tain in place of the operator �28� the new interaction term

VL = − ��L��† + �� .

In the rest of this section we will consider L=1.
Following the lines of the derivation as in Sec. III B with

the new definitions, we obtain the equation for the external
dynamics, Eq. �25�, where now

D = 0

and

S��� = − TrI�VL�L0I� + i��−1VL�St� � . �73�

Here, L0I� has the same form as L0I in Eq. �19�, with
H0L=0. Clearly, the disappearance of the diffusion term is
due to the fact that there is no field at zeroth order in the
Lamb-Dicke expansion.

The term �73�, giving the mechanical action on the atomic
motion, originates solely from scattering of laser photons. In
fact, the mechanical effects of the resonator field appear at
higher order in the Lamb-Dicke expansion. The cooling and
heating rates A±�=2 Re�S����� take the form

A±� = ��T1L
�±�2 + ��T1L

�±�2, �74�

where now

T1L
�,± = �

�
c � � + i�/2�
f����

, �75�

T1L
�,± = �

g̃

f����
, �76�

and

f�x� = �x + 
c + i�/2��x + � + i�/2� − g̃2. �77�

Hence, the transition amplitudes do not relevantly differ
from the ones in Eqs. �40�–�44�. However, no low saturation
limit is needed in the derivation of these results.

We study now the cooling dynamics in an exemplary
limit—namely, in the case of a very good resonator. We first
consider an ideal resonator—namely, �=0. We obtain

�A±���=0 =
�2�
c � ��2�

�2�
 � ��2/4 + ��
 � ���� � �� − g̃2�2 . �78�

Thus, when 
c=�, then the heating transition vanishes. Since
the diffusion is also zero, then A+�=0 and


n�St
�0� = o��2� .

The corresponding cooling rate reaches the maximum value
for �=�opt���—namely, �opt���= �g̃2−2�2� /2�—and takes
the form

W = 4�2�2

�
.

This result is exact for �=0.
Finite values of � introduce corrections to the heating

rate, which takes the form

A+� � ��2/g̃2 =
�2

�

1

C1
.

Correspondingly, the average number of phonons at steady
state is


n�St �
�2��� + �� − g̃2�2 + �2�2

4�2�2

1

C1
. �79�

The minimum value of the number of excitations at steady
state is found at �=�opt��� and is given by

�
n�St��opt��� = 1/4C1.

This cooling dynamics is novel and corresponds to the situ-
ation in which the excitation pathways of the combined
multilevel-atom-cavity system interfere destructively,
thereby suppressing the blue sideband excitation. They are
reminiscent of cooling schemes for multilevel atoms dis-
cussed in �42�, where suppression of the carrier and blue
sideband transitions is achieved by quantum interference be-
tween atomic excitations. In the case studied here, however,
the mechanism which leads to suppression of the carrier tran-
sition is different from the one that leads to the suppression
of the blue sideband transition, and both are due to the com-
posite effect of cavity and laser on the atom. Moreover, the
parameter regime here considered is one of several possible
that can be identified by imposing the disappearance of the
blue sidebands transition.

VI. RESULTS

In this section we compare the cooling efficiencies in the
various regime, as evaluated from the analytical results, and
check the range of validity of the analytical calculations with
a quantum Monte Carlo wave function method, where the
full quantum dynamics of master equation �4� is simulated.
We focus on the good-cavity limit, in particular on the pa-
rameters �	�	�.

A. Plot of the analytical results

The plots in Fig. 5 show the phonon number at steady
state and the cooling rate for different geometries of the
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setup. In particular, the plots of the first row depict the situ-
ation in which the mechanical effects on the atom are due to
both laser and cavity field, the plots of the second row show
the dynamics when the effects are solely due to the resonator,
and the ones in the third row show the dynamics when the
effects are solely due to the laser. The contour plots show
most evidently the parameter regions where cooling is effec-
tive. Here, the dashed line represents the function �55� which
determines the parameters minimizing the steady-state tem-
perature. Clearly, in the neighborhood of this line the lowest
temperature is achieved in all three cases. We note that the
parameter regimes where cooling occurs may differ depend-

ing on whether the dipole forces are due to the resonator or
to the laser.

We now discuss the dynamics in detail. Due to the wealth
of behaviors, we focus on the parameter regions where
ground-state cooling appears efficient.

Figures 5�b�, 5�f�, and 5�j� display the value of the aver-
age phonon number as a function of 
c and
�opt�
c�—namely, its value along the function �55�. Figures
5�d�, 5�h�, and 5�l� show the corresponding cooling rates.
Each plot displays two curves, which have been evaluated
for two different values of the cavity decay rate � �solid
curve, �=0.01�; dashed curve, �=0.1��. From these curves

FIG. 5. Average phonon number at steady state 
n�St and corresponding cooling rate W, in units of �, in the good-cavity limit, for �
	�	� and for three possible geometries: in �a�–�d� �first row� both cavity and laser fields contribute to the cooling: here �L=�c=� /4. In
�e�–�h� �second row� the mechanical effects of the cavity solely determine cooling: here �L=� /2 and �c=� /4. In �i�–�l� �last row� the
mechanical effects of the laser solely determine cooling: here �L=� /4 and �c=� /2. The contour plots show 
n�St and W as a function of 
c

and � in units of �. The gradation of gray follows the scale where darkest region corresponds to the smallest values, the lightest region to
the largest values. The corresponding values are reported at the bottom of the figure. The heating regions are not coded and explicitly
indicated by the label H. The dashed curve appearing in each contour plot represents the curve �opt�
c�, Eq. �55�. The parameters are
�=0.1, �L=� /4, �=�, g̃=7�, �=10�, and �=0.01�. The other plots display 
n�St and W as a function of 
c and �opt�
c�, for the same
parameters as of the contour plot and �=0.01� �solid line� and �=0.1� �dashed line�.
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it is visible that, as the cavity decay rate increases, the cool-
ing efficiency decreases; namely, the temperature gets higher
and the cooling rate lower. Nevertheless, for the parameter
here considered the cooling dynamics remains efficient. Let
us now discuss the behavior as we vary 
c and keep
�=�opt�
c�.

In all cases the function 
n�St exhibits a minimum at

c=−� at very large values of �. This is the sideband cooling
regime, discussed in Sec. IV C. The cooling rate at these
points is very small, since it scales as �−2, as visible from
Eq. �53� �43�. This cooling scheme exploits the dressed states
of the system at zeroth order in the Lamb-Dicke expansion
�see Sec. II�, and its efficiency is thus relatively independent
of whether the cavity or the laser forces determine cooling.
Here, the cooling efficiency is very sensitive to variation of

c, as visible from the contour plots. This sensitiveness is due
to the narrowness of the linewidth of the dressed-state reso-
nance which is used for cooling the motion.

The curves in Figs. 5�b� and 5�f� show also a minimum at

c=� /2. This is due to cooling by suppression of the resona-
tor’s mechanical coupling to the blue sideband transition �see
Sec. V C�. Clearly, this minimum is more enhanced in Fig.
5�f�, where cooling is solely due to the mechanical effects of
the cavity, and does not appear in Fig. 5�j�, where the reso-
nator field has no mechanical effects on the atom. The cor-
responding cooling rate is relatively large, the atom being
driven close to resonance in this regime. An interesting char-
acteristic, emerging from the contour plots, is that these cool-
ing dynamics are relatively robust to fluctuations of the pa-
rameters, showing that ground-state cooling is efficient even
in the regime in which suppression of the heating transition
is partial.

The heating region at 
c=−� /2, appearing in the case in
which the mechanical effects of the cavity solely contribute
to cooling, Figs. 5�e�–5�h�, originates from the same interfer-
ence effects that give rise to cooling at the value 
c=� /2 and
that for 
c=−� /2 leads to suppression of the cooling transi-
tion �see Sec. V C�.

Another regime where cooling is effective is found at

c=0 when the mechanical effects are solely due to the laser.
This parameter regime is characterized by small tempera-
tures and large cooling rates, as visible from Figs. 5�i�–5�l�.
This is the regime in which the carrier transition is sup-
pressed by an interference phenomenon at zeroth order in the
motion �see Secs. II and V B�. Cooling efficiency is robust
against fluctuations of the parameters and appears to be rela-
tively stable as the value of � is increased, as compared with
the sideband cooling case �see Fig. 5�j��.

In general, we can conclude that in the range of values of

c around the interval �0,� /2�, and close to atomic reso-
nance, the cooling efficiency is relatively high. We remark
that the final temperature is limited by the ratio � /�. This is
understood in the dressed-state picture, as the final limit to
the narrow dressed-state resonance is set by the cavity decay
rate �.

B. Numerical simulations

The curves reported in Fig. 5 have been obtained from the
analytical equations, which have been evaluated assuming

that dipole and cavity dynamics reach the steady state on a
much faster time scale than the center-of-mass dynamics. In
Fig. 6 we verify these results by comparing them with a full
quantum Monte Carlo wave function simulation of master
equation �4�. We see that in general the analytical predictions
are in agreement with the numerical results for a vast range
of parameters, which are experimentally accessible. The dis-
crepancies are small and are due to parameter regimes where
the adiabatic evolution is not fulfilled. The discrepancies af-
fect mostly the cooling rate, which varies by an overall fac-
tor, while the final average excitations of the center-of-mass
oscillator are in agreement.

VII. CONCLUSIONS

We have presented an extensive study of the cooling dy-
namics of trapped atoms in optical resonators. Our study is
based on a rate equation, which we derive from the master
equation of the system composed by atom and cavity, and
whose validity is supported by numerical simulations taking
into account the full quantum dynamics. Our analytical re-

FIG. 6. Comparison between the analytical equations �33� and
�39� and a full quantum Monte Carlo simulation of Eq. �4�. The
curves show the evolution of the average phonon number as the
function of time in units of �−1, the dashed lines correspond to the
analytical predictions, and the solid lines correspond to the quantum
Monte Carlo simulation. The parameters are �=0.1, �L=�c=�
=� /4, �=�, �=10�, and �=0.1� and �a� g=10�, 
c=−1.1�; �b�
g=10�, 
c=0; �c� g=10�, 
c=0.5�; �d� g=50�, 
c=−1.1�; �e�
g=50�, 
c=0; and �f� g=50�, 
c=0.5�.
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sults are valid in the Lamb-Dicke regime and when the
center-of-mass potential is independent of the internal state,
like in �7,25,26�.

The equations we derive reproduce the results reported in
�13,15� in their specific parameter regimes. Moreover, they
allow us to identify new parameter regimes where the dy-
namics of the atomic center of mass, coupled to a laser and a
cavity field, results from a nontrivial competition of the laser
and of the resonator dipole forces, which can mutually inter-
fere. These interference effects are at the basis of novel cool-
ing schemes, which we identify in this paper and which al-
low us to reach very large ground-state occupations. The
corresponding dynamics is reminescent of cooling schemes
exploiting interference in multilevel atomic transitions
�30,42,44�.

It must be remarked that the interference effects discussed
in this work base themselves on the discreteness of the spec-
trum of the mechanical excitations, which is the same for the
dipolar ground and excited states. The dynamics will be sub-
stantially modified when the external potential depends on
the internal state, as the spectroscopic properties of the atom
are changed and with it the scattering cross section. Prelimi-
nary considerations are in �37� for the case of trapped mul-
tilevel atoms, while the effects of state-dependent mechani-
cal potentials on the cavity field have been discussed in �45�.

In this paper we have focused on the case of dipole tran-
sitions, which in free space do not allow one to apply side-
band cooling. Here, ground-state cooling can be obtained in
good resonators, whereby the final cooling efficiency is lim-
ited by the cavity decay rate. The bad-cavity case is con-
tained in the analytical equations we have derived. In this
limit the effect of the laser seems to be predominant, and for
a general configuration the optimal cooling corresponds to
standard cavity sideband cooling �46�. This differs strikingly
from the good-cavity limit, where correlations between atom
and resonator can lead to very efficient cooling. We remark
that this dynamics is largely modified when the drive is set
on the resonator.

To conclude, this work considers the cooling dynamics to
the potential ground state of a single atom inside a resonator.
In the future we will investigate how the collective dynamics
of several atoms, confined in a resonator, influences the cool-
ing efficiency and how this can be used to prepare quantum
states of the system in a controlled way.
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APPENDIX A: LIMIT OF A WEAK DRIVING FIELD

We consider the limit when the atom is weakly driven—
namely, when the Rabi frequency � is much smaller than all
the other physical parameters that characterize the internal
dynamics. We study the dynamics of the motion in perturba-

tion theory in second order in � and �, and neglect the terms
of order �4�2, �2�4 and higher.

At zeroth order in � the laser field is zero. Hence, at
steady state the cavity is empty and the atom is in the ground
state. The state of dipole and cavity is described by the den-
sity matrix

�St
� = �g,0c�
g,0c� ,

which is the solution of the equation L0I
� �St

� =0, with

L0I
� � = �L0I��=0� =

1

i�
�Hat + Hcav + H0at−cav,�� + K� + L0s�

�A1�

and is obtained from L, Eq. �4�, at zeroth order in � and �.
Following the general procedure described in Sec. III B, we
define the projector P�= �g ,0c�
g ,0c� � �n�n�
n�TrI�
n���n��
into the eigenspace of the superoperator,

L0
� = L0I

� + L0E, �A2�

namely, the Liouvillian at zero order in � and �, at the
eigenvalue zero. The effect of the perturbation in � and � is
described by the equation

P�̇ = LPP� ,

where we have eliminated the coupling with other subspaces,
thereby obtaining

LP = �
n,m=0

�

�n�m

g̃m Ln,m �A3�

=�2�2

g̃2 L2,2 + O�4�2

g̃2 � + O�2�4

g̃4 � . �A4�

At the lowest nonvanishing order only the term L2,2 is rel-
evant and

LP � �2�2

g̃2 L2,2 �A5�

=L
2LL + c

2Lc + cLLcL + Ldiff. �A6�

The subscripts L, c, and cL label the terms describing pro-
cesses in which the mechanical effect on the atoms are due,
respectively, to the laser, the cavity, and the cooperative ac-
tion of the laser and cavity. They have the form

LL = − PL1LL0
�−1L1L, �A7�

Lc = − PL1cL0
�−1L1cL0

�−1L0LL0
�−1L0L

− PL1cL0
�−1L0LL0

�−1L1cL0
�−1L0L, �A8�

LcL = PL1LL0
�−1L1cL0

�−1L0L + PL1cL0
�−1L0LL0

�−1L1L

+ PL1cL0
�−1L1LL0

�−1L0L, �A9�

where the terms which trivially vanish have been omitted.
Here,
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L0L� = −
i

�
�H0L,�� �A10�

describes the laser-atom interaction at zeroth order in �
where H0L is defined in Eq. �21� and

L1L� = − �
i

�
��b† + b�VL,�� �A11�

and

L1c� = − �
i

�
��b† + b�Vc,�� �A12�

describe, respectively, the laser-atom and cavity-atom inter-
actions at first order in � where VL and Vc are defined in Eqs.
�29� and �30�. The diffusion due to carrier excitation is given
by

Ldiff = PL2sL0
�−1L0LL0

�−1L0L, �A13�

where

L2s� =
��

2
��2�b + b†���b + b†� − �b + b†�2� − ��b + b†�2��†

�A14�

is the Liouvillian at second order in � for the atomic spon-
taneous emission.

Tracing over the internal degree of freedom we obtain an
equation for the density matrix �=TrI�P�� for the center-of-
mass variables,

TrI�LdiffP�� = �2�D�b�b† − b†b� + b†�b − bb†�� + H.c.�

TrI�L jP�� = �2�Sj����b�b† − b†b�� + Sj�− ���b†�b − bb†��

+ H.c.� , �A15�

with j= �L ,c ,cL�. The coefficients D and Sj are defined as

D =
��

2
TrI��†�L0I

�−1L0�L0I
�−1L0��SS

� � �A16�

and

SL��� = − TrI�VL�L0I
� + i��−1VL�SS

� � ,

Sc��� = − TrI�Vc�L0I
� + i��−1�VcL0I

�−1L0L

+ L0L�L0I
� + i��−1Vc�L0I

�−1L0L�st
� � ,

ScL��� = TrI�VL�L0I
� + i��−1VcL0I

�−1L0L�st
�

+ Vc�L0I
� + i��−1L0L�L0I

� + i��−1VL�st
�

+ Vc�L0I
� + i��−1VLL0I

�−1L0L�st
� � . �A17�

Setting S���=L
2SL���+c

2Sc���+cLScL��� we find an
equation of the same form as Eq. �25�. The real parts of these
terms are

Re�D� = ���TS�2/2, �A18�

Re�SL����� = ���TL
�,±�2 + ��TL

�,±�2�/2, �A19�

Re�Sc����� = ���Tc
�,±�2 + ��Tc

�,±�2�/2, �A20�

Re�ScL����� = ��TL
�,±Tc

�,±* + �TL
�,±Tc

�,±*�/2 + c.c.,

�A21�

where the coefficients T j are given explicitly in Eqs.
�40�–�44�. Finally, heating and cooling rates are given by
A±=2 Re�S����+D� and their explicit dependence on the
physical parameters is reported in Eq. �39�.

APPENDIX B: LIMIT OF SMALL CAVITY LOSS RATE

In this appendix we discuss the derivation of the rate
equation, in the limit of small cavity loss and 
c=0, by mak-
ing no assumption over the laser Rabi frequency �, which
may saturate the atomic transition. The results we obtain in
this appendix are valid provided that g̃�0.

In order to derive the rate equation for the atomic motion
we closely follow the general approach described in Sec.
III B, where here we expand at second order in � and at first
order in �. The limit of applications of the perturbative ex-
pansion are found after identifying the smallest rate deter-
mining the internal dynamics for �=
c=0. This is the width
of the narrow resonance �−, which for sufficiently large val-
ues of ��� takes the form

�− �
�

41 −
���

��2 + 4g̃2� . �B1�

Therefore, an expansion in � and � is possible provided that
�	�− and �cg̃, �L�	�−. In this regime, the internal
dynamics at zeroth order are described by the Liouvillian

L00I = �L0I��=0,
c=0 =
1

i�
�Hat + H0at−cav + H0L,�� + L0s�

�B2�

and the steady state, which is solution of L00I�0St=0, is given
by Eq. �64�. The superoperator at zeroth order in � and � is
given by

L00 = L00I + L0E, �B3�

and the corresponding projector over the eigenspace at eigen-
value zero is P�= �g ,�c�
g ,�c� � �n�n�
n �TrI�
n���n��. The
dynamics of this subspace at the lowest relevant order in �
and � /�− is P�̇=LPP� where

LP = �
n=0,m=0

�

�n�m

�−
mLn,m. �B4�

At lowest order it has the form

LP � �2L2,0 + �2 �

�−
L2,1, �B5�

where

�2L2,0 = − PL1L00
−1L1, �B6�
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�2 �

�−
L2,1 = PL1L00

−1L1L00
−1K + PL1L00

−1KL00
−1L1, �B7�

with

L1 = − �
i

�
��b† + b�V1,�� , �B8�

Liouvillian at first order in � for the coupling between atom
and electromagnetic field, and V1 given by Eqs. �28�. Note
that we have omitted to write the terms which trivially van-
ish. Tracing over the internal degree of freedom we obtain
the equation

�̇ = TrI�LP�0SS � ��

for the center-of-mass variables density matrix �=TrI�P��,
whereby

TrI�L2,�P�� = �2�S�����b�b† − b†b��

+ S��− ���b†�b − bb†�� + H.c.� . �B9�

Here the index �= �0,1� indicates the order of the expansion
in �. From this equation we can identify the coefficients of
Eq. �25�, and thus

D = 0

and

S��� = S0��� + S1��� ,

where

S0��� = − TrI�V1�L00I + i��−1V1�0SS� ,

S1��� = TrI�V1�L00I + i��−1�V1L00I
−1 K

+ K�L00I + i��−1V1��0SS� . �B10�

Note that D=o��2�, as in this system the population of the
atomic excited states grows quadratically with � �32,33�.

Heating and cooling rates are found from the relation
A±=2 Re�S0����+S1����� and take the form

A± = �2A±�L
2 + c

2 + ��
±� , �B11�

whereby ���
±�	1. In particular,

A± =
�2�

���� � �� − g̃2�2 + �2�2/4
, �B12�

with

��
± =

�2

�2 C11 −
�

2
A±��L

2 + c
2� −

c
2

2C1
+

�

�
��

g̃2 � 1�Lc.

�B13�

The result �B11� coincides with the one obtained from
expanding Eq. �39� to the first order in � and with 
c=0,
from which the results in Eqs. �58� and �60� have been ob-
tained. Nevertheless, in deriving the rates �B11� we have
made no assumption on the strength of the laser intensity.
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