2,456 research outputs found
Exact results for Casimir interactions between dielectric bodies: The weak-coupling or van der Waals Limit
In earlier papers we have applied multiple scattering techniques to calculate
Casimir forces due to scalar fields between different bodies described by delta
function potentials. When the coupling to the potentials became weak,
closed-form results were obtained. We simplify this weak-coupling technique and
apply it to the case of tenuous dielectric bodies, in which case the method
involves the summation of van der Waals (Casimir-Polder) interactions. Once
again exact results for finite bodies can be obtained. We present closed
formulas describing the interaction between spheres and between cylinders, and
between an infinite plate and a retangular slab of finite size. For such a
slab, we consider the torque acting on it, and find non-trivial equilibrium
points can occur.Comment: 4 pages, 3 figure
Evaluating an unconfined aquifer by analysis of age-dating tracers in stream water
The mean transit time (MTT) is a fundamental property of a groundwater flow system that is strongly related to the ratio of recharge rate to storage volume. However, obtaining samples for estimating the MTT using environmental tracers is problematic as flow-weighted samples over the full spectrum of transit times are needed. Samples collected fromthe base flow of a gaining stream in the North Carolina Coastal Plain (West Bear Creek) that were corrected for exchange with the atmosphere yielded environmental tracer concentrations (SF6 and CFC-11) very similar to flow-weighted values from nine or ten streambed piezometers that directly sampled groundwater during low streamflow. At higher streamflow on the falling limb of the hydrograph, stream tracer concentrations (after correction for gas exchange) were significantly higher than the flow-weighted mean from piezometers, consistent with dominance of the streamtracer signal by transient influx of surface water and/or younger subsurface water. The apparent MTT derived from SF6 in low flow stream water samples was 26 years, suggesting a groundwater recharge rate of about 210 mm/yr, that is consistent with vertical profiles obtained by sampling nested piezometers in the aquifer. When sampled under low flow conditions when streamflow consists of a high component of groundwater discharge, West Bear Creek appears to act as a flow-weighted integrator of transit times and, streamflow samples can provide fundamental information regarding groundwater recharge rate and MTT. Our study suggests that watershed-scale evaluation of some groundwater flow systems is possible without utilizing monitoring wells
Selective addressing of high-rank atomic polarization moments
We describe a method of selective generation and study of polarization
moments of up to the highest rank possible for a quantum state with
total angular momentum . The technique is based on nonlinear magneto-optical
rotation with frequency-modulated light. Various polarization moments are
distinguished by the periodicity of light-polarization rotation induced by the
atoms during Larmor precession and exhibit distinct light-intensity and
frequency dependences. We apply the method to study polarization moments of
Rb atoms contained in a vapor cell with antirelaxation coating. Distinct
ultra-narrow (1-Hz wide) resonances, corresponding to different multipoles,
appear in the magnetic-field dependence of the optical rotation. The use of the
highest-multipole resonances has important applications in quantum and
nonlinear optics and in magnetometry.Comment: 5 pages, 6 figure
Relaxation of atomic polarization in paraffin-coated cesium vapor cells
The relaxation of atomic polarization in buffer-gas-free, paraffin-coated
cesium vapor cells is studied using a variation on Franzen's technique of
``relaxation in the dark'' [Franzen, Phys. Rev. {\bf 115}, 850 (1959)]. In the
present experiment, narrow-band, circularly polarized pump light, resonant with
the Cs D2 transition, orients atoms along a longitudinal magnetic field, and
time-dependent optical rotation of linearly polarized probe light is measured
to determine the relaxation rates of the atomic orientation of a particular
hyperfine level. The change in relaxation rates during light-induced atomic
desorption (LIAD) is studied. No significant change in the spin relaxation rate
during LIAD is found beyond that expected from the faster rate of spin-exchange
collisions due to the increase in Cs density.Comment: 14 pages, 14 figure
Disclosing the Radio Loudness Distribution Dichotomy in Quasars: An Unbiased Monte Carlo Approach Applied to the SDSS-FIRST Quasar Sample
We investigate the dichotomy in the radio loudness distribution of quasars by
modelling their radio emission and various selection effects using a Monte
Carlo approach. The existence of two physically distinct quasar populations,
the radio-loud and radio-quiet quasars, is controversial and over the last
decade a bimodal distribution of radio loudness of quasars has been both
affirmed and disputed. We model the quasar radio luminosity distribution with
simple unimodal and bimodal distribution functions. The resulting simulated
samples are compared to a fiducial sample of 8,300 quasars drawn from the SDSS
DR7 Quasar Catalog and combined with radio observations from the FIRST survey.
Our results indicate that the SDSS-FIRST sample is best described by a radio
loudness distribution which consists of two components, with 12+/-1 % of
sources in the radio-loud component. On the other hand, the evidence for a
local minimum in the loudness distribution (bimodality) is not strong and we
find that previous claims for its existence were probably affected by the
incompleteness of the FIRST survey close to its faint limit. We also
investigate the redshift and luminosity dependence of the radio loudness
distribution and find tentative evidence that at high redshift radio-loud
quasars were rarer, on average "louder", and exhibited a smaller range in radio
loudness. In agreement with other recent work, we conclude that the SDSS-FIRST
sample strongly suggests that the radio loudness distribution of quasars is not
a universal function, and that more complex models than presented here are
needed to fully explain available observations.Comment: Accepted for publication in ApJ; 13 pages, 10 figure
Legal Issues about Metadata: Data Privacy vs Information Security
International audienceFor the purposes of our work we use the concept of metadata to implement enterprise digital right management mechanisms in an intelligent document environment. Such metadata allow us to firstly define contextual security rules and secondly to ensure the information traceability. However, its use may have legal implications, especially with regard to metadata that can be stored (see personal data, privacy), how it should be stored (see probative value in case of litigation, digital forensics) or computer processing in which it may be involved. Another topical issue is the storage and the processing of data using a service provider: the cloud. We must ensure, however, that this solution does not lead to a loss of information controllability for the company. This article aims to position our work with respect to these legal issues
Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells
Using laser optical pumping, widths and frequency shifts are determined for
microwave transitions between ground-state hyperfine components of Rb
and Rb atoms contained in vapor cells with alkane anti-relaxation
coatings. The results are compared with data on Zeeman relaxation obtained in
nonlinear magneto-optical rotation (NMOR) experiments, a comparison important
for quantitative understanding of spin-relaxation mechanisms in coated cells.
By comparing cells manufactured over a forty-year period we demonstrate the
long-term stability of coated cells, an important property for atomic clocks
and magnetometers
Excitations in confined helium
We design models for helium in matrices like aerogel, Vycor or Geltech from a
manifestly microscopic point of view. For that purpose, we calculate the
dynamic structure function of 4He on Si substrates and between two Si walls as
a function of energy, momentum transfer, and the scattering angle. The
angle--averaged results are in good agreement with the neutron scattering data;
the remaining differences can be attributed to the simplified model used here
for the complex pore structure of the materials. A focus of the present work is
the detailed identification of coexisting layer modes and bulk--like
excitations, and, in the case of thick films, ripplon excitations. Involving
essentially two--dimensional motion of atoms, the layer modes are sensitive to
the scattering angle.Comment: Phys. Rev. B (2003, in press
- …