455 research outputs found

    Boundary Controllability and Observability of a Viscoelastic String

    Get PDF
    In this paper we consider an integrodifferential system, which governs the vibration of a viscoelastic one-dimensional object. We assume that we can act on the system at the boundary and we prove that it is possible to control both the position and the velocity at every point of the body and at a certain time T T , large enough. We shall prove this result using moment theory and we shall prove that the solution of this problem leads to identify a Riesz sequence which solves controllability and observability. So, the result as presented here are constructive and can lead to simple numerical algorithms

    Interior Regularity of Solutions of the Tricomi Problem

    Get PDF

    Channeling in direct dark matter detection I: channeling fraction in NaI (Tl) crystals

    Full text link
    The channeling of the ion recoiling after a collision with a WIMP changes the ionization signal in direct detection experiments, producing a larger signal than otherwise expected. We give estimates of the fraction of channeled recoiling ions in NaI (Tl) crystals using analytic models produced since the 1960's and 70's to describe channeling and blocking effects. We find that the channeling fraction of recoiling lattice nuclei is smaller than that of ions that are injected into the crystal and that it is strongly temperature dependent.Comment: 37 pages, 35 figures, Accepted for publication in JCAP on 27 October 2010, Minor revisions: added an appendix, updated references, updated Fig. 9, corrected a few typo

    Nonequilibrium plasmons and transport properties of a double-junction quantum wire

    No full text
    We study theoretically the current-voltage characteristics, shot noise, and full counting statistics of a quantum wire double barrier structure. We model each wire segment by a spinless Luttinger liquid. Within the sequential tunneling approach, we describe the system’s dynamics using a master equation. We show that at finite bias the nonequilibrium distribution of plasmons in the central wire segment leads to increased average current, enhanced shot noise, and full counting statistics corresponding to a super-Poissonian process. These effects are particularly pronounced in the strong interaction regime, while in the noninteracting case we recover results obtained earlier using detailed balance arguments

    Giant Shapiro steps for two-dimensional Josephson-junction arrays with time-dependent Ginzburg-Landau dynamics

    Full text link
    Two-dimensional Josephson junction arrays at zero temperature are investigated numerically within the resistively shunted junction (RSJ) model and the time-dependent Ginzburg-Landau (TDGL) model with global conservation of current implemented through the fluctuating twist boundary condition (FTBC). Fractional giant Shapiro steps are found for {\em both} the RSJ and TDGL cases. This implies that the local current conservation, on which the RSJ model is based, can be relaxed to the TDGL dynamics with only global current conservation, without changing the sequence of Shapiro steps. However, when the maximum widths of the steps are compared for the two models some qualitative differences are found at higher frequencies. The critical current is also calculated and comparisons with earlier results are made. It is found that the FTBC is a more adequate boundary condition than the conventional uniform current injection method because it minimizes the influence of the boundary.Comment: 6 pages including 4 figures in two columns, final versio

    On Nonlinear Stochastic Balance Laws

    Full text link
    We are concerned with multidimensional stochastic balance laws. We identify a class of nonlinear balance laws for which uniform spatial BVBV bounds for vanishing viscosity approximations can be achieved. Moreover, we establish temporal equicontinuity in L1L^1 of the approximations, uniformly in the viscosity coefficient. Using these estimates, we supply a multidimensional existence theory of stochastic entropy solutions. In addition, we establish an error estimate for the stochastic viscosity method, as well as an explicit estimate for the continuous dependence of stochastic entropy solutions on the flux and random source functions. Various further generalizations of the results are discussed

    Fano resonances and Aharonov-Bohm effects in transport through a square quantum dot molecule

    Full text link
    We study the Aharonov-Bohm effect in a coupled 2×\times2 quantum dot array with two-terminals. A striking conductance dip arising from the Fano interference is found as the energy levels of the intermediate dots are mismatched, which is lifted in the presence of a magnetic flux. A novel five peak structure is observed in the conductance for large mismatch. The Aharonov-Bohm evolution of the linear conductance strongly depends on the configuration of dot levels and interdot and dot-lead coupling strengths. In addition, the magnetic flux and asymmetry between dot-lead couplings can induce the splitting and combination of the conductance peak(s).Comment: 15 pages, 7 figures, Revtex, to be published in Phys. Rev.

    Mesoscopic Fano Effect in a Quantum Dot Embedded in an Aharonov-Bohm Ring

    Full text link
    The Fano effect, which occurs through the quantum-mechanical cooperation between resonance and interference, can be observed in electron transport through a hybrid system of a quantum dot and an Aharonov-Bohm ring. While a clear correlation appears between the height of the Coulomb peak and the real asymmetric parameter qq for the corresponding Fano lineshape, we need to introduce a complex qq to describe the variation of the lineshape by the magnetic and electrostatic fields. The present analysis demonstrates that the Fano effect with complex asymmetric parameters provides a good probe to detect a quantum-mechanical phase of traversing electrons.Comment: REVTEX, 9 pages including 8 figure
    corecore