40 research outputs found

    Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens

    Full text link
    Base editors are chimeric ribonucleoprotein complexes consisting of a DNA-targeting CRISPR-Cas module and a single-stranded DNA deaminase. They enable transition of C•G into T•A base pairs and vice versa on genomic DNA. While base editors have great potential as genome editing tools for basic research and gene therapy, their application has been hampered by a broad variation in editing efficiencies on different genomic loci. Here we perform an extensive analysis of adenine- and cytosine base editors on a library of 28,294 lentivirally integrated genetic sequences and establish BE-DICT, an attention-based deep learning algorithm capable of predicting base editing outcomes with high accuracy. BE-DICT is a versatile tool that in principle can be trained on any novel base editor variant, facilitating the application of base editing for research and therapy

    Safe delivery of AAV vectors to the liver of small weaned pigs by ultrasound-guided percutaneous transhepatic portal vein injection

    Get PDF
    One challenge for liver-directed gene therapy is sufficient vector delivery to the target tissue while minimizing loss of the applied vector dose to other tissues. Infusion via peripheral veins is the least invasive approach; however, it results in systemic diffusion and substantial vector dilution. Here, we describe a safe and minimally invasive method to deliver adeno-associated virus (AAV) vectors to the liver of small weaned pigs by ultrasound-guided percutaneous trans-hepatic portal vein injection. 4-week-old piglets were infused with ∼2.5×1014^{14}vector genomes comprising a dual-rAAV2/9 vector system with a split adenine base editor forin vivoinactivation ofPCSK9to reduce LDL-cholesterol levels. Animals had no signs of discomfort and tolerated the procedure well. However, despite 45% editing of the target site with the applied adenine base editor system in cultivated porcine cells, we only found low amounts of AAV vector genomes and neither detectable transgene-expression nor successful editing in the treated pig livers. We hypothesize that rapid proliferation of pig hepatocytes caused AAV vector dilution, leading to a loss of the vectors from the nucleus, and hence insufficient base editor protein expression for achieving detectable editing rates. Nonetheless, ultrasound-guided percutaneous transhepatic injection to the portal vein is well-tolerated in piglets and has potential for human (neonate) application

    Cancer is a Preventable Disease that Requires Major Lifestyle Changes

    Get PDF
    This year, more than 1 million Americans and more than 10 million people worldwide are expected to be diagnosed with cancer, a disease commonly believed to be preventable. Only 5–10% of all cancer cases can be attributed to genetic defects, whereas the remaining 90–95% have their roots in the environment and lifestyle. The lifestyle factors include cigarette smoking, diet (fried foods, red meat), alcohol, sun exposure, environmental pollutants, infections, stress, obesity, and physical inactivity. The evidence indicates that of all cancer-related deaths, almost 25–30% are due to tobacco, as many as 30–35% are linked to diet, about 15–20% are due to infections, and the remaining percentage are due to other factors like radiation, stress, physical activity, environmental pollutants etc. Therefore, cancer prevention requires smoking cessation, increased ingestion of fruits and vegetables, moderate use of alcohol, caloric restriction, exercise, avoidance of direct exposure to sunlight, minimal meat consumption, use of whole grains, use of vaccinations, and regular check-ups. In this review, we present evidence that inflammation is the link between the agents/factors that cause cancer and the agents that prevent it. In addition, we provide evidence that cancer is a preventable disease that requires major lifestyle changes

    Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens

    Full text link
    Base editors are chimeric ribonucleoprotein complexes consisting of a DNA-targeting CRISPR-Cas module and a single-stranded DNA deaminase. They enable conversion of C•G into T•A base pairs and vice versa on genomic DNA. While base editors have vast potential as genome editing tools for basic research and gene therapy, their application has been hampered by a broad variation in editing efficiencies on different genomic loci. Here we perform an extensive analysis of adenine- and cytosine base editors on thousands of lentivirally integrated genetic sequences and establish BE-DICT, an attention-based deep learning algorithm capable of predicting base editing outcomes with high accuracy. BE-DICT is a versatile tool that in principle can be trained on any novel base editor variant, facilitating the application of base editing for research and therapy

    Enhancing prime editor activity by directed protein evolution in yeast

    No full text
    Abstract Prime editing is a highly versatile genome editing technology that enables the introduction of base substitutions, insertions, and deletions. However, compared to traditional Cas9 nucleases prime editors (PEs) are less active. In this study we use OrthoRep, a yeast-based platform for directed protein evolution, to enhance the editing efficiency of PEs. After several rounds of evolution with increased selection pressure, we identify multiple mutations that have a positive effect on PE activity in yeast cells and in biochemical assays. Combining the two most effective mutations – the A259D amino acid substitution in nCas9 and the K445T substitution in M-MLV RT – results in the variant PE_Y18. Delivery of PE_Y18, encoded on DNA, mRNA or as a ribonucleoprotein complex into mammalian cell lines increases editing rates up to 3.5-fold compared to PEmax. In addition, PE_Y18 supports higher prime editing rates when delivered in vivo into the liver or brain. Our study demonstrates proof-of-concept for the application of OrthoRep to optimize genome editing tools in eukaryotic cells

    Enhancing prime editor activity by directed protein evolution in yeast

    No full text
    Prime editing is a highly versatile genome editing technology that enables the introduction of base substitutions, insertions, and deletions. However, compared to traditional Cas9 nucleases prime editors (PEs) are less active. In this study we use OrthoRep, a yeast-based platform for directed protein evolution, to enhance the editing efficiency of PEs. After several rounds of evolution with increased selection pressure, we identify multiple mutations that have a positive effect on PE activity in yeast cells and in biochemical assays. Combining the two most effective mutations – the A259D amino acid substitution in nCas9 and the K445T substitution in M-MLV RT – results in the variant PE_Y18. Delivery of PE_Y18, encoded on DNA, mRNA or as a ribonucleoprotein complex into mammalian cell lines increases editing rates up to 3.5-fold compared to PEmax. In addition, PE_Y18 supports higher prime editing rates when delivered in vivo into the liver or brain. Our study demonstrates proof-of-concept for the application of OrthoRep to optimize genome editing tools in eukaryotic cells.ISSN:2041-172
    corecore