125 research outputs found

    Pharmacokinetics and diuretic effect of furosemide after single intravenous, oral tablet, and newly developed oral disintegrating film administration in healthy beagle dogs

    Get PDF
    Background Furosemide, a diuretic that acts on the loop of Henle, is commonly used to treat congestive heart failure in veterinary medicine. Some owners have difficulty in administering oral tablet medication to animal patients, which leads to noncompliance, especially during long-term administration. Oral disintegrating film (ODF) has the advantages of easy administration via a non-invasive route, rapid dissolution, and low suffocating risk. The objective of this study was to research the pharmacokinetic (PK) profiles and diuretic effect of furosemide after intravenous (IV), orally uncoated tablet (OUT), and newly developed ODF administration in healthy beagle dogs. In this study, a furosemide-loaded ODF (FS-ODF) formulation was developed and five beagle dogs were administered a single dose (2 mg/kg) of furosemide via each route using a cross-over design. Results The most suitable film-forming agent was sodium alginate; thus, this was used to develop an ODF for easy drug administration. No significant differences were detected in the PK profiles between OUT and FS-ODF. In the blood profiles, the concentration of total protein was significantly increased compared to the baseline (0 h), whereas no significant difference was detected in the concentration of creatinine and hematocrit compared to the baseline. FS-ODF resulted in a similar hourly urinary output to OUT during the initial 2 h after administration. The urine specific gravity was significantly decreased compared to the baseline in each group. The peak times of urine electrolyte (sodium and chloride) excretion per hour were 1 h (IV), 2 h (OUT), and 2 h (FS-ODF). Conclusions These results suggest that the PK/PD of furosemide after administration of newly developed FS-ODF are similar to those of OUT in healthy dogs. Therefore, the ODF formulation has the benefits of ease and convenience, which would be helpful to owners of companion animals, such as small dogs (< 10 kg), for the management of congestive heart failure

    High levels of soluble herpes virus entry mediator in sera of patients with allergic and autoimmune diseases

    Get PDF
    Herpes virus entry mediator (HVEM) is a newly discovered member of the tumor necrosis factor receptor (TNFR) superfamily that has a role in herpes simplex virus entry, in T cell activation and in tumor immunity. We generated mAb against HVEM and detected soluble HVEM (SHVEM) in the sera of patients with various autoimmune diseases. HVEM was constitutively expressed on CD4+ and CD8+ T cells, CD19+ B cells, CD14+ monocytes, neutrophils and dendritic cells. In three-way MLR, mAb 122 and 139 were agonists and mAb 108 had blocking activity. An ELISA was developed to detect sHVEM in patient sera. sHVEM levels were elevated in sera of patients with allergic asthma, atopic dermatitis and rheumatoid arthritis. The mAbs discussed here may be useful for studies of the role of HVEM in immune responses. Detection of soluble HVEM might have diagnostic and prognostic value in certain immunological disorders

    Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation.</p> <p>Methods</p> <p>Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6). The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [<sup>3</sup>H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of <it>n</it>-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay.</p> <p>Results</p> <p>In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma) that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma) without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET/PTC.</p> <p>Conclusion</p> <p>These findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.</p

    Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster

    Get PDF
    AbstractBackgroundNetwork motifs provided a “conceptual tool” for understanding the functional principles of biological networks, but such motifs have primarily been used to consider static network structures. Static networks, however, cannot be used to reveal time- and region-specific traits of biological systems. To overcome this limitation, we proposed the concept of a “spatiotemporal network motif,” a spatiotemporal sequence of network motifs of sub-networks which are active only at specific time points and body parts.ResultsOn the basis of this concept, we analyzed the developmental gene regulatory network of the Drosophila melanogaster embryo. We identified spatiotemporal network motifs and investigated their distribution pattern in time and space. As a result, we found how key developmental processes are temporally and spatially regulated by the gene network. In particular, we found that nested feedback loops appeared frequently throughout the entire developmental process. From mathematical simulations, we found that mutual inhibition in the nested feedback loops contributes to the formation of spatial expression patterns.ConclusionsTaken together, the proposed concept and the simulations can be used to unravel the design principle of developmental gene regulatory networks
    corecore